1. cho x-y=7 Tính:
b) B=x^3(x+1)-y^2(y-1)+xy-3xy(x-y+1)+100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$B=x^3(x+1)-y^2(y-1)+xy-3xy(x-y+1)+100$
$=x^4+x^3-y^3+y^2+xy-3xy(x-y)-3xy+100$
$=[x^3-y^3-3xy(x-y)]+x^4+y^2-2xy+100$
$=(x-y)^3+x^4-x^2+(x^2-2xy+y^2)+100$
$=(x-y)^3+x^4-x^2+(x-y)^2+100=7^3+x^4-x^2+7^2+100=492+x^4-x^2$
Như biểu thức trên thì không tính được giá trị cụ thể bạn nhé.
a)
Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(=x^2+2x+y^2-2y-2xy+37\)
\(=x^2+y^2+1+2x-2y-2xy+36\)
\(=\left(x-y+1\right)^2+36\)(1)
Thay x-y=7 vào biểu thức (1), ta được:
\(A=\left(7+1\right)^2+36=8^2+36=100\)
Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-7=7
a: \(M=x^3+x^2-y^3+y^2+xy-3xy-95\)
\(=\left(x-y\right)^3+\left(x-y\right)^2-95\)
\(=7^3+7^2-95=297\)
b: \(N=3\left[\left(x+y\right)^2-2xy\right]-2\left(x+y\right)+6xy-100\)
\(=3\cdot\left(25-2xy\right)-10+6xy-100\)
=75-6xy-10+6xy-100
=-35
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17