K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 7 2020

Lời giải:

$B=x^3(x+1)-y^2(y-1)+xy-3xy(x-y+1)+100$

$=x^4+x^3-y^3+y^2+xy-3xy(x-y)-3xy+100$

$=[x^3-y^3-3xy(x-y)]+x^4+y^2-2xy+100$

$=(x-y)^3+x^4-x^2+(x^2-2xy+y^2)+100$

$=(x-y)^3+x^4-x^2+(x-y)^2+100=7^3+x^4-x^2+7^2+100=492+x^4-x^2$

Như biểu thức trên thì không tính được giá trị cụ thể bạn nhé.

a)

Sửa đề: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

Ta có: \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)

\(=x^2+2x+y^2-2y-2xy+37\)

\(=x^2+y^2+1+2x-2y-2xy+36\)

\(=\left(x-y+1\right)^2+36\)(1)

Thay x-y=7 vào biểu thức (1), ta được:

\(A=\left(7+1\right)^2+36=8^2+36=100\)

Vậy: 100 là giá trị của biểu thức \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\) tại x-7=7

23 tháng 8 2019

mình hog bít

a: \(M=x^3+x^2-y^3+y^2+xy-3xy-95\)

\(=\left(x-y\right)^3+\left(x-y\right)^2-95\)

\(=7^3+7^2-95=297\)

b: \(N=3\left[\left(x+y\right)^2-2xy\right]-2\left(x+y\right)+6xy-100\)

\(=3\cdot\left(25-2xy\right)-10+6xy-100\)

=75-6xy-10+6xy-100

=-35

14 tháng 7 2016

A=2y^3-4y^2-28y+294

14 tháng 7 2016

bucminhDễ hỉu quớ ha

9 tháng 8 2017

Bài 8: Cho a+b= 1 nha ( mk thiếu đề)

9 tháng 8 2017

Bài 1:

Theo bài ra ta có:

\(\left(x-y\right)^2=x^2-2xy+y^2\)

\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)

\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)

\(=25-10y+y^2+25-10x+x^2-4\)

\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)

\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)

\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)

\(=50-50+5^2-4-4\)

\(=25-8=17\)

Vậy giá trị của \(\left(x-y\right)^2\)là 17