K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2020

Ta có:

\(x+\frac{1}{x}=\left(x+\frac{2019^2}{x}\right)-\frac{2019^2-1}{x}\ge_{Cauchy}2\sqrt{x.\frac{2019^2}{x}}-\frac{2019^2-1}{2019}=2.2019-2019+\frac{1}{2019}=2019+\frac{1}{2019}\).

Tương tự, \(y+\frac{1}{y}\ge2020+\frac{1}{2020};z+\frac{1}{z}\ge2021+\frac{1}{2021}\).

Do đó: \(M\ge2019+2020+2021=3.2020=6060\).

Dấu "="xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=2019\\y=2020\\z=2021\end{matrix}\right.\)

1 tháng 9 2016

Lần lượt áp dụng bất đẳng thức cô-si ta có: \(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx}.\)
Suy ra: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz.\)
Dấu bằng xảy ra khi x = y = z.

23 tháng 6 2016

\(M=\frac{x+y}{xy}.\frac{1}{z}\ge\frac{2\sqrt{xy}}{xy}.\frac{1}{z}=\frac{2}{z\sqrt{xy}}\ge\frac{2}{z\left(\frac{x+y}{2}\right)}=\frac{4}{z\left(x+y\right)}\)

\(=\frac{4}{z\left(1-z\right)}=\frac{4}{\frac{1}{4}-\left(z-\frac{1}{2}\right)^2}\ge16\)

Min M= 16 khi  z=1/2 và  x=y =1/4.

4 tháng 6 2019

Áp dụng BĐT Cauchy-Schwarz Engel, ta được:

T\(\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)+x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\)-(x+y+z+\(\sqrt{xy}\)+\(\sqrt{yz}\)+\(\sqrt{zx}\))

Áp dụng BĐT AM-GM , ta được:

T\(\ge\)2(x+y+z)-x-y-z-\(\frac{x+y+z}{2}\)=\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{2019}{2}\)

Vậy: GTNN của A=\(\frac{2019}{2}\)khi x=y=z=673

4 tháng 6 2019

\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)(bunhiacopxki dạng phân thức)

=>\(T>=\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}}\)

=>\(T>=\frac{2\left(x+y+z\right)^2}{4\left(x+yz\right)}=\frac{x+y+z}{2}=\frac{2019}{2}\)

xảy ra dấu= khi và chỉ khi \(x=y=z=\frac{2019}{3}\)

12 tháng 11 2015

bạn thay 1 vào mấy cái tử là xong

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
Áp dụng BĐT AM-GM:
$1=xy+yz+xz+2xyz\leq \frac{(x+y+z)^2}{3}+2.\frac{(x+y+z)^3}{27}$

$\Leftrightarrow 1\leq \frac{t^2}{3}+\frac{2t^3}{27}$ (đặt $x+y+z=t$)

$\Leftrightarrow 2t^3+9t^2-27\geq 0$

$\Leftrightarrow (t+3)^2(2t-3)\geq 0$

$\Leftrightarrow 2t-3\geq 0$
$\Leftrightarrow t\geq \frac{3}{2}$ hay $x+y+z\geq \frac{3}{2}$ (đpcm)

Dấu "=" xảy ra khi $x=y=z=\frac{1}{2}$

31 tháng 1 2023

Cho em hỏi là thầy sài bđt gì vậy ạ?

 

DD
23 tháng 7 2021

\(x^2+y^2+z^2-\left(x+y+z\right)=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)

có \(x\left(x-1\right),y\left(y-1\right),z\left(z-1\right)\)là các tích của hai số nguyên liên tiếp nên chia hết cho \(2\)do đó 

\(\left(x+y+z\right)\equiv\left(x^2+y^2+z^2\right)\left(mod2\right)\)

\(\Rightarrow x+y+z⋮2\)(vì \(x^2+y^2+z^2⋮2\)

\(\Leftrightarrow x+7y+13z⋮2\).

Mà \(x+7y+13z>2\)(do \(x,y,z\)dương) 

nên \(x+7y+13z\)là hợp số. 

16 tháng 3 2017

chưa học nên ko biết

27 tháng 11 2024

Ngáo đá

28 tháng 3 2017

Giải:

Cộng \(1\) vào \(2\) vế của 3 PT ta được:

\(\left(x+1\right)\left(y+1\right)=4\)

\(\left(y+1\right)\left(z+1\right)=9\)

\(\left(z+1\right)\left(x+1\right)=16\)

Nhân 2 PT bất kỳ rồi chia cho cái còn lại ta được: 

\(\left(x+1\right)^2=4.\frac{16}{9}=\frac{64}{9}\Rightarrow x+1=\sqrt{\frac{64}{9}}\Rightarrow x=\frac{5}{3}\) (do \(x\) dương)

\(\left(y+1\right)^2=4.\frac{9}{16}=\frac{9}{4}\Rightarrow y+1=\sqrt{\frac{9}{4}}\Rightarrow y=\frac{1}{2}\) (do \(y\) dương)

\(\left(z+1\right)^2=9.\frac{16}{4}=36\Rightarrow z+1=\sqrt{36}\Rightarrow z=5\) (do \(z\) dương)

\(\Rightarrow P=x+y+z=\frac{5}{3}+\frac{1}{2}+5=\frac{43}{6}\)

Vậy \(P=\frac{43}{6}\)

11 tháng 3 2017

câu hỏi khó thế