tim so tu nhien n sao cho n+3:(n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n- 1 chia hết cho 3 => n - thuộc Ư( 3)
Ư( 3 ) = {1;3}
=> n - 1= { 1;3}
n = { 2 ; 4}
ai tick cho mình tròn 180 với
Ta có:
\(n^2+n+3⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)+3⋮n+1\)
\(\Leftrightarrow3⋮n+1\) (vì \(n\left(n+1\right)⋮n+1\))
\(\Leftrightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
\(\Leftrightarrow n\in\left\{0;2\right\}\)
Vậy...
\(4n-12⋮3n+1\)
\(\Rightarrow3\left(4n-12\right)⋮3n+1\)
\(\Rightarrow12n+4-40⋮3n+1\)
\(\Rightarrow4\left(3n+1\right)-40⋮3n+1\)
\(\Rightarrow40⋮3n+1\) (Vì \(4\left(3n+1\right)⋮3n+1\))
\(\Rightarrow3n+1\inƯ\left(40\right)=\left\{1;2;4;5;8;10;20;40\right\}\)
\(\Rightarrow3n\in\left\{0;1;3;4;7;9;19;39\right\}\)
Mà n \(\in\) N nên 3n \(⋮\) 3 \(\Rightarrow3n\in\left\{0;3;9;39\right\}\)
\(\Rightarrow n\in\left\{0;1;3;13\right\}\)
4-n chia hết n+1
4-n + n+1 chia hết cho n+1
5 chia hết cho n+1
n+1 thuộc Ư(5)
n+1 thuộc {1;5}
n thuộc {0;4)
n+5 chia het cho n-3
=>n-3+8 chia het cho n-3
=>8 chia het cho n-3
=>n-3 E Ư(8)={1;2;4;8}
=> n E {4;5;7;11}
ta có:5n+3 :n+1
3 chia hết cho n suy ra 3 chia hết cho 1
vậy Ư(3)={1;3}
Vậy n thuộc {1;3}
Ta có:5n+3=5n+5-2=5(n+1)-2
Để 5n+3 chia hết cho n+1 thì 2 chia hết cho n+1
=>n+1\(\in\)U(2)={1,2}
=>n\(\in\){0,1}
tick nha
Ta có :
a x n - a = 59
n ; a \(\ne1\)
a x ( n - 1 ) = 59
=> a hoặc n = 59
Ta chọn
a = 59 ; nếu a = 59 thì n - 1 = 1 ; n = 2
=>n+3-n+1 chia hết cho n+1
=>3-1 chia hết cho n+1
=>2 chia hết cho n+1
=>n+1 thuộc Ư(2)
=>n+1 thuộc {1;2}
Vậy n+1 thuộc {0;1}