giải các pt
a) \(cos2x-cos40^o=0\)
b) \(cos3x-cos\left(x-80^o\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(cos3x=-cos\left(x-120^0\right)\)
\(\Leftrightarrow cos3x=cos\left(x+60^0\right)\)
\(\Rightarrow\left[{}\begin{matrix}3x=x+60^0+k360^0\\3x=-x-60^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=30^0+k180^0\\x=-15^0+k90^0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-90^0\right)=cos2x\)
\(\Leftrightarrow-cos2x=cos2x\)
\(\Rightarrow cos2x=0\Rightarrow2x=90^0+k180^0\)
\(\Rightarrow x=45^0+k90^0\)
\(cos^2x+sin^2x+2sinx.cosx=1+cos4x\)
\(\Leftrightarrow1+sin2x=1+cos4x\)
\(\Leftrightarrow cos4x=sin2x=cos\left(\frac{\pi}{2}-2x\right)\)
\(\Rightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}-2x+k2\pi\\4x=2x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+\frac{k\pi}{3}\\x=-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
a: ĐKXĐ: sin 2x<>1
=>2x<>pi/2+k2pi
=>x<>pi/4+kpi
\(\dfrac{cos2x}{sin2x-1}=0\)
=>cos2x=0
=>2x=pi/2+kpi
=>x=pi/4+kpi/2
Kết hợp ĐKXĐ, ta được:
x=3/4pi+k2pi hoặc x=7/4pi+k2pi
b: cos(sinx)=1
=>sin x=kpi
=>sin x=0
=>x=kpi
c: \(2\cdot sin^2x-1+cos3x=0\)
=>cos3x+cos2x=0
=>cos3x=-cos2x=-sin(pi/2-2x)=sin(2x-pi/2)
=>cos3x=cos(pi/2-2x+pi/2)=cos(pi-2x)
=>3x=pi-2x+k2pi hoặc 3x=-pi+2x+k2pi
=>x=-pi+k2pi hoặc x=pi/5+k2pi/5
e: cos3x=-cos7x
=>cos3x=cos(pi-7x)
=>3x=pi-7x+k2pi hoặc 3x=-pi+7x+k2pi
=>x=pi/10+kpi/5 hoặc x=pi/4-kpi/2
b/
\(\Leftrightarrow\frac{1}{2}+\frac{1}{2}cosx+1-cos^2x+2cos^2x-1=\frac{1}{2}\)
\(\Leftrightarrow cos^2x+\frac{1}{2}cosx=0\)
\(\Leftrightarrow cosx\left(cosx+\frac{1}{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\left(\frac{sinx}{cosx}+\frac{cosx}{sinx}\right)^2+\frac{3}{sin2x}-7=0\)
\(\Leftrightarrow\left(\frac{sin^2x+cos^2x}{sinx.cosx}\right)^2+\frac{3}{sin2x}-7=0\)
\(\Leftrightarrow\left(\frac{2}{sin2x}\right)^2+\frac{3}{sin2x}-7=0\)
Đặt \(\frac{1}{sin2x}=a\Rightarrow4a^2+3a-7=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{7}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{1}{sin2x}=1\\\frac{1}{sin2x}=-\frac{7}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=-\frac{4}{7}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k2\pi\\2x=arcsin\left(-\frac{4}{7}\right)+k2\pi\\2x=\pi-arcsin\left(-\frac{4}{7}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\\x=\frac{\pi}{2}-\frac{1}{2}arcsin\left(-\frac{4}{7}\right)+k\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow2cos2x.cosx+\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right).cos2x=0\)
\(\Leftrightarrow2cos2x.cosx+cos^22x=0\)
\(\Leftrightarrow cos2x\left(2cosx+cos2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\left(1\right)\\2cosx+cos2x=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)
\(\left(2\right)\Leftrightarrow2cosx+2cos^2x-1=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{\sqrt{3}-1}{2}\\cosx=\frac{-\sqrt{3}-1}{2}< -1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm arccos\left(\frac{\sqrt{3}-1}{2}\right)+k2\pi\)
\(sin2x=\sqrt{3}cos2x\)
Nhận thấy cos2x=0 ko phải nghiệm, pt tương đương:
\(\frac{sin2x}{cos2x}=\sqrt{3}\Leftrightarrow tan2x=\sqrt{3}\)
\(\Rightarrow2x=\frac{\pi}{3}+k\pi\Rightarrow x=\frac{\pi}{6}+\frac{k\pi}{2}\)
b/
\(cos\left(90^0-x\right)=-sin2x=cos\left(2x+90^0\right)\)
\(\Rightarrow\left[{}\begin{matrix}90^0-x=2x+90^0+k360^0\\90^0-x=-2x-90^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k120^0\\x=-180^0+k360^0\end{matrix}\right.\)
c/ Giống câu a
\(\Leftrightarrow tanx=-\sqrt{3}\Rightarrow x=-\frac{\pi}{3}+k\pi\)
e/
ĐKXĐ: ...
\(\Leftrightarrow\frac{2sin4x.cos2x}{cos2x}-2cos4x=2\sqrt{2}\)
\(\Leftrightarrow2sin4x-2cos4x=2\sqrt{2}\)
\(\Leftrightarrow sin4x-cos4x=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(4x-\frac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(4x-\frac{\pi}{4}\right)=1\)
\(\Leftrightarrow4x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)
\(\Rightarrow x=\frac{3\pi}{16}+\frac{k\pi}{2}\)
d/
Đặt \(sin2x-cos2x=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(\Rightarrow t^2-3t-4=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=-\frac{\pi}{4}+k2\pi\\2x-\frac{\pi}{4}=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{3\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow3\sin x-4\sin^3x+4\cos^3x-3\cos x-2\cos x+2\sin x+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\cos x.\sin x\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\dfrac{\left(\cos x-\sin x\right)^2-1}{2}\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)Đặt cosx-sinx=a. Thay vào giải pt ta tìm được: a=1
<=> cosx-sinx=1
\(\Leftrightarrow\cos x.\sin\dfrac{\pi}{4}-\sin x.\cos\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sin\left(\dfrac{\pi}{4}-x\right)=\sin\dfrac{\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{4}-x=\dfrac{\pi}{4}-2k\pi\Rightarrow x=2k\pi\\\dfrac{\pi}{4}-x=\pi-\dfrac{\pi}{4}-2k\pi\Rightarrow x=-\dfrac{\pi}{2}+2k\pi\end{matrix}\right.\)
\(cos2x=cos40\)
\(\Rightarrow\left[{}\begin{matrix}2x=40^0+k360^0\\2x=-40^0+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=20^0+k180^0\\x=-20^0+k180^0\end{matrix}\right.\)
\(cos3x=cos\left(x-80^0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=x-80^0+k360^0\\3x=80^0-x+k360^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-40^0+k180^0\\x=20^0+k90^0\end{matrix}\right.\)