Tìm GTLN:
E = 11- (3x +5y- 2)2 - 2y2 - (2x - y)2 + 2.( 2x+y). ( 3x+5y-2) + 4y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a: \(\left\{{}\begin{matrix}x+4y=-11\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=-10\\x+4y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=\dfrac{-11-x}{4}=\dfrac{-11+\dfrac{5}{3}}{4}=-\dfrac{7}{3}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x-y=7\\3x+5y=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-3y=21\\6x+15y=-66\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-18y=78\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13}{3}\\x=\dfrac{y+7}{2}=\dfrac{4}{3}\end{matrix}\right.\)
Trả lời:
a, 5x2 + 10xy + 5y2 = 5 ( x2 + 2xy + y2 ) = 5 ( x + y )2
b, x2 + 3x - y2 + 3y = ( x2 - y2 ) + ( 3x + 3y ) = ( x - y )( x + y ) + 3 ( x + y ) = ( x + y )( x - y + 3 )
c, x2 + 5x - y2 + 5y = ( x2 - y2 ) + ( 5x + 5y ) = ( x - y )( x + y ) + 5 ( x + y ) = ( x + y )( x - y + 5 )
d, 3x2 - 3y2 - 2 ( x - y )2 = 3 ( x2 - y2 ) - 2 ( x - y )2 = 3 ( x - y )( x + y ) - 2 ( x - y )2 = ( x - y )[ 3 ( x + y ) - 2 ] = ( x - y )( 3x + 3y - 2 )
e, x2 - 2x - 4y2 - 4y = ( x2 - 4y2 ) - ( 2x + 4y ) = ( x - 2y )( x + 2y ) - 2 ( x + 2y ) = ( x + 2y )( x - 2y - 2 )
a) 5x2+10xy+5y2
=5(x2+2xy+y2)
=5(x+y)2
b) x2+3x-y2+3y
=(x2-y2)+(3x+3y)
=(x-y)(x+y)+3(x+y)
=(x+y)(x-y+3)
c) x2+5x-y2+5y
=(x2-y2)+(5x+5y)
=(x-y)(x+y)+5(x+y)
=(x+y)(x-y+5)
d) 3x2-3y2-2(x-y)2
=3(x2-y2)-2(x-y)2
=3(x-y)(x+y)-2(x-y)2
=(x-y)[3(x+y)-2(x-y)]
e) x2-2x-4y2-4y
=(x2-4y2)-(2x+4y)
=(x-2y)(x+2y)-2(x+2y)
=(x+2y)(x-2y-2)
#H
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)