\(a+b+c=3\\ a,b,c\ge0\)
\(A=\left(a+2b+3c\right)\left(a+\frac{b}{2}+\frac{c}{3}\right)\)
GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)
\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)
Áp dụng BĐT Cosi ta có:
\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)
Từ (1)(2)(3) ta có:
\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)
Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)
Dấu "=" xảy ra <=> a=b=c=1
Đặt A=\(\left(\frac{-a}{2}+\frac{b}{3}+\frac{c}{6}\right)^3+\left(\frac{a}{3}+\frac{b}{6}-\frac{c}{2}\right)^3+\left(\frac{a}{6}-\frac{b}{2}+\frac{c}{3}\right)^3\)
\(=\left(\frac{-3a+2b+c}{6}\right)^3+\left(\frac{2a+b-3c}{6}\right)^3+\left(\frac{a-3b+2c}{6}\right)^3\)
\(=\left(\frac{-3a+2b+c+2a+b-3c+a-3b+2c}{6}\right)^3-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)
(Hằng đẳng thức)
\(=0-\frac{\left(-a+3b-2c\right)\left(3a-2b-c\right)\left(-2a-b+3c\right)}{72}\)
\(\Rightarrow\frac{\left(a-3b+2c\right)\left(-3a+2b+c\right)\left(2a+b-3c\right)}{72}=\frac{1}{8}\)
\(\Leftrightarrow\left(a-3b+2c\right)\left(2a+b-3c\right)\left(-3a+2b+c\right)=9\)(đpcm).
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2b+c-a}{a}=\frac{2c-b+a}{b}=\frac{2a+b-c}{c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Do đó :
\(\frac{2b+c-a}{a}=2\)\(\Rightarrow\)\(c=3a-2b\)\(;\)\(2b=3a-c\)\(\left(1\right)\)
\(\frac{2c-b+a}{b}=2\)\(\Rightarrow\)\(a=3b-2c\)\(;\)\(2c=3b-a\)\(\left(2\right)\)
\(\frac{2a+b-c}{c}=2\)\(\Rightarrow\)\(b=3c-2a\)\(;\)\(2a=3c-b\)\(\left(3\right)\)
Thay (1), (2) và (3) vào \(P=\frac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\) ta được :
\(P=\frac{c.a.b}{2b.2c.2a}=\frac{abc}{8abc}=\frac{1}{8}\)
Vậy \(P=\frac{1}{8}\)
Chúc bạn học tốt ~
Phùng Minh Quân sai nha nếu a+b+c = 0 thì a+b+c / 2(a+b+c) thì nó không bằng 1/2 đc mà nó bằng 0
BĐT tương đương : \(\frac{a\left(a+c+b-3b\right)}{1+ab}+\frac{b\left(b+a+c-3c\right)}{a+bc}+\frac{c\left(c+b+a-3a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{3a\left(1-b\right)}{1+ab}+\frac{3b\left(1-c\right)}{1+bc}+\frac{3c\left(1-a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+\frac{b\left(1-c\right)}{1+bc}+\frac{c\left(1-a\right)}{1+ca}\ge0\)
\(\Leftrightarrow\frac{a\left(1-b\right)}{1+ab}+1+\frac{b\left(1-c\right)}{1+bc}+1+\frac{c\left(1-a\right)}{1+ca}\ge3\)
\(\Leftrightarrow\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\)
Áp dụng BĐT Cosi ta có: \(\frac{a+1}{1+ab}+\frac{b+1}{1+bc}+\frac{c+1}{1+ca}\ge3\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\)
Ta phải chứng minh: \(\sqrt[3]{\frac{a+1}{1+ab}\cdot\frac{b+1}{1+bc}\cdot\frac{c+1}{1+ca}}\ge1\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)
Thật vậy \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge\left(1+ab\right)\left(1+bc\right)\left(1+ca\right)\)
\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1\ge a^2b^2c^2+abc\left(a+b+c\right)+ab+bc+ca+1\)
\(\Leftrightarrow3\ge a^2b^2c^2+2abc\) (*)
Từ a+b+c=3 => \(3\ge3\sqrt[3]{abc}\Leftrightarrow abc\le1\)
=> (*) đúng
Vậy \(\frac{a\left(a+c-2b\right)}{1+ab}+\frac{b\left(b+a-2c\right)}{1+bc}+\frac{c\left(c+b-2a\right)}{1+ca}\ge0\)
Đẳng thức xảy ra <=> a=b=c=1