K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

Bài làm:

\(a^3+b^3+c^3\ge3.\sqrt[3]{a^3b^3c^3}=3abc\)(Áp dụng bất đẳng thức Cauchy)

Dấu "=" không xảy ra khi: \(a^3\ne b^3\ne c^3\Rightarrow a\ne b\ne c\)

16 tháng 4 2017

\(a^3+b^3+c^3\ge3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)(1)

Vì \(a;b;c>0\Rightarrow a+b+c>0\) (2)

Do đó ta cần phải CM : \(a^2+b^2+c^2-ab-ac-bc\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)Luôn đúng (3)

Từ (2) ; (3) => BĐT (1) đúng

\(\Rightarrow a^3+b^3+c^3\ge3abc\) đúng (ĐPCM)

16 tháng 4 2017

e cảm ơn ạ

a: Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a+b+c=0\)

21 tháng 8 2021

a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)

a: Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow a+b+c=0\)

29 tháng 3 2018

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0

\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)

\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)

29 tháng 3 2018

bạn thử tra mạng đi

27 tháng 3 2018

Được bạn nhé :"))))

Ủng hộ mình = cách theo dõi mình nha

27 tháng 3 2018

người ta hỏi thầy ( cô) giáo chứ có phải.......

AH
Akai Haruma
Giáo viên
29 tháng 6 2023

Bài 1: 

$a^3+b^3+c^3=3abc$

$\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0$

$\Leftrightarrow [(a+b)^3+c^3]-[3ab(a+b)+3abc]=0$

$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)=0$
$\Leftrightarrow (a+b+c)[(a+b)^2-c(a+b)+c^2-3ab]=0$

$\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0$

$\Rightarrow a+b+c=0$ hoặc $a^2+b^2+c^2-ab-bc-ac=0$

Xét TH $a^2+b^2+c^2-ab-bc-ac=0$

$\Leftrightarrow 2(a^2+b^2+c^2)-2(ab+bc+ac)=0$

$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow a-b=b-c=c-a=0$

$\Leftrightarrow a=b=c$

Vậy $a^3+b^3+c^3=3abc$ khi $a+b+c=0$ hoặc $a=b=c$

Áp dụng vào bài:

Nếu $a+b+c=0$

$A=\frac{-c}{c}+\frac{-b}{b}+\frac{-a}{a}=-1+(-1)+(-1)=-3$

Nếu $a=b=c$

$P=\frac{a+a}{a}+\frac{b+b}{b}+\frac{c+c}{c}=2+2+2=6$

10 tháng 4 2018

Cách khác dễ hiểu hơn

Áp dụng BĐT Cô si 2 số ko âm 

Ta có: \(\frac{a^3}{b}+ab\ge2\sqrt{a^4}=2a^2\)

Tương tự rồi sau đó lại có:

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}+ab+bc+ca\ge2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)

10 tháng 4 2018

Áp dụng BĐT Cô si với 3 số k âm 

\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge\frac{3\sqrt[3]{a^3.a^3.b^2}}{b^2}=3a^2\)

\(\frac{b^3}{c}+\frac{b^3}{c}+b^2\ge3b^2\)

\(\frac{c^3}{a}+\frac{c^3}{a}+c^2\ge3c^2\)

\(\Rightarrow2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+a^2+b^2+c^2\ge3\left(a^2+b^2+c^2\right)\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)

Mà \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)