C =( 1+ 1/2) x ( 1+ 1/3)x (1+ 1/4) x ....x(1+1/2013)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\left(\dfrac{2}{2}+\dfrac{1}{3}\right)\times\left(\dfrac{3}{3}+\dfrac{1}{3}\right)\times\left(\dfrac{4}{4}+\dfrac{1}{4}\right)\times...\times\left(\dfrac{2013}{2013}+\dfrac{1}{2013}\right)\)
\(C=\dfrac{3}{2}\times\dfrac{4}{3}\times\dfrac{5}{4}\times....\times\dfrac{2014}{2013}\)
\(C=\dfrac{2014}{2}=1007\)
`C = (2/2 + 1/3) xx (3/3 + 1/3) xx (4/4 + 1/4) xx ... xx (2013/2013 + 1/2013)`
`C = 3/2 xx 4/3 xx 5/4 xx ... xx 2014/2013`
`C = 2014/2 = 1007`
Vậy `C = 1007`
\(a)\) \(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3S=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3S-S=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2S=3+\frac{1}{3^7}\)
\(2S=\frac{3^8+1}{3^7}\)
\(S=\frac{3^8+1}{3^7}.\frac{1}{2}\)
\(S=\frac{3^8+1}{2.3^7}\)
Vậy \(S=\frac{3^8+1}{2.3^7}\)
Chúc bạn học tốt ~
Ta có : C = \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2013}\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{2014}{2013}=\frac{3.4.5...2014}{2.3.4...2013}=\frac{2014}{2}=1007\)
\(C=\left(1+\frac{1}{2}\right).\left(1+\frac{1}{3}\right).....\left(1+\frac{1}{2013}\right)\)
\(C=\frac{3}{2}.\frac{4}{3}.....\frac{2014}{2013}\)
\(C=\frac{2014}{2}=1007\)
\(A=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x......x\left(1-\frac{1}{2013}\right)x\left(1-\frac{1}{2014}\right)\)
\(A=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...............x\frac{2012}{2013}x\frac{2013}{2014}\)
\(A=\frac{1}{2014}\)
\(\left[1-\frac{1}{2}\right]\left[1-\frac{1}{3}\right]...\left[1-\frac{1}{2014}\right]\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\cdot\frac{2013}{2014}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2013}{2\cdot3\cdot4\cdot5\cdot...\cdot2014}=\frac{1}{2014}\)
\(C=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)....\left(1+\frac{1}{2013}\right)\)
\(C=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2014}{2013}\)
\(C=\frac{3\cdot4\cdot5\cdot...\cdot2014}{2\cdot3\cdot4\cdot5\cdot...\cdot2013}=\frac{2014}{2}=1007\)
Dấu "." là dấu nhân nhá