Cho (O) có 2 đường kính AB & CD ⊥ với nhau. Đ' E ϵ OC ( E # O, C ). nối AE cắt (O) tại M
a, CMR : AC2 = AE . AM
b, xác định vị trí của E trên OC để MA = 2MB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi giao điểm của OC với AB là H
Vì OC\(\perp\)AB nên OH\(\perp\)AB tại H
=>OH là khoảng cách từ O xuống dây AB
Ta có: ΔOAB cân tại O
mà OH là đường cao
nên H là trung điểm của AB
=>HA=HB=AB/2=8(cm)
ΔOHA vuông tại H
=>\(OH^2+HA^2=OA^2\)
=>\(OH^2=10^2-8^2=36\)
=>\(OH=\sqrt{36}=6\left(cm\right)\)
Câu 2:
a: Xét (O) có
AB là đường kính
BC là dây
Do đó: AB>BC
b: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
c: Xét ΔACB có
O là trung điểm của AB
OM//CB
Do đó: M là trung điểm của AC
góc AEB=1/2*180=90 độ
góc CDA=1/2*180=90 độ
góc CEB=góc CDB
=>CDEB nội tiếp
Vì O, O’ và B thẳng hàng nên: O’B < OB => O’ nằm giữa O và B
Ta có: OO’ = OB - O’B
Vậy đường tròn (O’) tiếp xúc với đường tròn (O) tại B
https://olm.vn/hoi-dap/detail/66015664055.html bạn vào đây tham khảo nha
Tam giác DEK vuông tại K có KH là trung tuyến thuộc cạnh huyền DE nên: HK = HE = (1/2).DE (tính chất tam giác vuông)
Suy ra tam giác EHK cân tại H
d) Xét tam giác DEK vuông tại K có KH là trung tuyến nên KH = HE
ΔKHE có KH = HE ⇒ ΔKHE cân tại H
⇒ ∠(HKE ) = ∠(KEH)
Lại có ΔO'CK cân tại O' ⇒ ∠(O'CK) = (O'KC)
⇒ ∠(HKE ) + ∠(O'KC) = ∠(KEH) + ∠(O'CK)
⇔ ∠(O'KH) = ∠(KEH) + ∠(O'CK)
Mặt khác ∠(O'CK) = ∠(HCE) (đối đỉnh)
ΔHEC vuông tại H nên ∠(KEH) + ∠(HCE) = 90o ⇒ ∠(KEH) + ∠(O'CK) = 90 0
Hay ∠(O'KH) = 90 0
⇒ KH là tiếp tuyến của (O')