K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2020

\(ĐKXĐ:x\ne\pm5\)

\(\frac{5}{x+5}-\frac{x-3}{5-x}=\frac{2x-40}{x^2-25}\)

\(\Leftrightarrow\frac{5}{x+5}+\frac{x-3}{x-5}=\frac{2x-40}{x^2-25}\)

\(\Leftrightarrow\frac{5x-25+5x-15}{x^2-25}=\frac{2x-40}{x^2-25}\)

\(\Rightarrow10x-40=2x-40\)

\(\Leftrightarrow x=0\left(TMĐKXĐ\right)\)

Vậy x=0

28 tháng 6 2020

\(\frac{5}{x+5}-\frac{x-3}{5-x}=\frac{2x-40}{x^2-25}\) ( đkxđ : \(x\ne\pm5\))

( 5 - x ) = -( 5 - x ) = -5 + x = x - 5

<=> \(\frac{5}{x+5}-\frac{x-3}{x-5}=\frac{2x-40}{\left(x+5\right)\left(x-5\right)}\)

<=> \(\frac{5\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}-\frac{\left(x+5\right)\left(x-3\right)}{\left(x+5\right)\left(x-5\right)}=\frac{2x-40}{\left(x+5\right)\left(x-5\right)}\)

<=> \(5x-25-x^2+2x-15=2x-40\)

<=> \(5x-x^2+2x-2x=-40+25+15\)

<=> \(5x-x^2=0\)

<=> \(x^2-5x=0\)

<=> \(x\left(x-5\right)=0\)

<=> x = 0 ( nhận ) hoặc x = 5 ( loại do đkxđ )

Vậy nghiệm của phương trình là x = 0

<=> 

26 tháng 4 2019

ĐKXĐ : \(x\ne0;x\ne\pm5\)

\(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)

\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x+5\right)}=\frac{x+25}{2\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Rightarrow2\left(x+5\right)^2-\left(x-5\right)^2=x\left(x+25\right)\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)

\(\Leftrightarrow5x+25=0\)

\(\Leftrightarrow x=-5\)(ko t/m ĐKXĐ)

Vậy phương trình vô nghiệm.

4 tháng 4 2020

errrrr

3 tháng 6 2017
  1. Điều kiện \(\hept{\begin{cases}x\ne5\\x\ne-5\end{cases}}\)\(\Leftrightarrow\frac{x+5}{x\left(x-5\right)}-\frac{\left(x-5\right)}{2x\left(x+5\right)}=\frac{x+25}{2\left(x+5\right)\left(x-5\right)}\)\(\Leftrightarrow\frac{2\left(x+5\right)^2-\left(x-5\right)^2}{2x\left(x-5\right)\left(x+5\right)}=\frac{x\left(x+25\right)}{2x\left(x+5\right)\left(x-5\right)}\)\(\Leftrightarrow x^2+30x+25=x^2+25\Leftrightarrow x=0\)
  2. Điều Kiện : \(x\ne1\)\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)\(\Leftrightarrow x^2+x+1-3x=2x^2-2x\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)so sánh điều kiện có nghiệm phương trình là : \(x=-1\)
3 tháng 6 2017

\(\frac{x+5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x+5\right)}=\frac{x+25}{2\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow\)tu giai ra de ma

a: ĐKXĐ: x<>5

Ta có: \(\frac{4x-3}{x-5}=\frac76\)

=>\(6\left(4x-3\right)=7\left(x-5\right)\)

=>24x-18=7x-35

=>17x=-35+18=-17

=>x=-1(nhận)

b: ĐKXĐ: x∉{0;-5}

Ta có: \(\frac{2x+5}{2x}-\frac{x}{x+5}=0\)

=>\(\frac{\left(2x+5\right)\left(x+5\right)-2x\cdot x}{2x\left(x+5\right)}=0\)

=>\(\left(2x+5\right)\left(x+5\right)-2x^2=0\)

=>\(2x^2+10x+5x+25-2x^2=0\)

=>15x=-25

=>\(x=-\frac{25}{15}=-\frac53\) (nhận)

c: ĐKXĐ: x<>1

Ta có: \(\frac{4x-5}{x-1}=2+\frac{x}{x-1}\)

=>\(\frac{4x-5}{x-1}=\frac{2x-2+x}{x-1}\)

=>4x-5=3x-2

=>4x-3x=-2+5

=>x=3(nhận)

28 tháng 6 2020

\(ĐKXĐ:x\ne\pm5\)

\(\frac{5}{x+5}-\frac{x-3}{5-x}=\frac{2x-40}{x^2-25}\)

\(\Leftrightarrow\frac{5}{x+5}+\frac{x-3}{x-5}-\frac{2x-40}{\left(x-5\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\frac{5x-25+x^2+2x-15-2x+40}{\left(x-5\right)\left(x+5\right)}=0\)

\(\Leftrightarrow x^2+5x=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\( \Leftrightarrow\left[{}\begin{matrix}x=-5\left(ktm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{0\right\}\)

ĐKXĐ: x∉{-5;5}

Ta có: \(\frac{5}{x+5}-\frac{x-3}{5-x}=\frac{2x-40}{x^2-25}\)

\(\Leftrightarrow\frac{5}{x+5}+\frac{x-3}{x-5}=\frac{2x-40}{x^2-25}\)

\(\Leftrightarrow\frac{5\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\frac{\left(x-3\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\frac{2x-40}{\left(x-5\right)\left(x+5\right)}\)

Suy ra: \(5\left(x-5\right)+\left(x-3\right)\left(x+5\right)=2x-40\)

\(\Leftrightarrow5x-25+x^2+2x-15=2x-40\)

\(\Leftrightarrow x^2+7x-40-2x+40=0\)

\(\Leftrightarrow x^2+5x=0\)

\(\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=-5\left(ktm\right)\end{matrix}\right.\)

Vậy: S={0}

a: ĐKXĐ: x∉{5;-5}

Ta có: \(\frac{2}{x-5}+\frac{3}{x+5}+\frac{-2x+20}{x^2-25}=0\)

=>\(\frac{2}{x-5}+\frac{3}{x+5}+\frac{-2x+20}{\left(x-5\right)\left(x+5\right)}=0\)

=>\(\frac{2\left(x+5\right)+3\left(x-5\right)-2x+20}{\left(x-5\right)\left(x+5\right)}=0\)

=>2(x+5)+3(x-5)-2x+20=0

=>2x+10+3x-15-2x+20=0

=>3x+15=0

=>3x=-15

=>x=-5(loại)

b: ĐKXĐ: x∉{2;-2}

Ta có: \(\frac{3x}{x-2}+\frac{4x}{x+2}+\frac{-5x^2-2x}{x^2-4}=0\)

=>\(\frac{3x}{x-2}+\frac{4x}{x+2}+\frac{-5x^2-2x}{\left(x-2\right)\left(x+2\right)}=0\)

=>\(\frac{3x\left(x+2\right)+4x\left(x-2\right)-5x^2-2x}{\left(x-2\right)\left(x+2\right)}=0\)

=>\(3x\left(x+2\right)+4x\left(x-2\right)-5x^2-2x=0\)

=>\(3x^2+6x+4x^2-8x-5x^2-2x=0\)

=>\(2x^2-4x=0\)

=>2x(x-2)=0

=>x(x-2)=0

=>\(\left[\begin{array}{l}x=0\\ x-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(nhận\right)\\ x=2\left(loại\right)\end{array}\right.\)

14 tháng 3 2017

3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0

3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0

1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0

1/(x-8)-1/(x-2)+6/5=0

ban tu giai tiep nhan

m^2x+2x=5-3mx

m^2x+3mx+2x=5

x(m^2+3m+2)=5

khi 0x=5 thi pt vo nghiem

m^2+3m+2=0

(m+1)(m+2)=0

m=-1 hoac m=-2

14 tháng 3 2017

ai giúp tui zới