S = 2/2.3 + 2/3.4 + 2/4.5 +...+ 2/59.60 . Chứng tỏ S < 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰⁰
2S = 2 + 2² + 2³ + 2⁴ + ... + 2¹⁰¹
S = 2S - S
= (2 + 2² + 2³ + ... + 2¹⁰¹) - (1 + 2 + 2² + ... + 2¹⁰⁰)
= 2¹⁰¹ - 1
------------
S = 1.2 + 2.3 + 3.4 + ... + 99.100 + 100.101
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98) + 100.101.(102 - 99)
= 1.2.3 - 1.2.3 + 2
3.4 - 2.3.4 + 3.4.5 - ... - 98.99.100 + 99.100.101 - 99.100.101 + 100.101.102
= 100.101.102
S = 100 . 101 . 102 : 3
= 343400
------------
Q = 1² + 2² + 3² + ... + 100² + 101²
= 101.102.(2.101 + 1) : 6
= 348551
S = 2/1×2 + 2/2×3 + 2/3×4 + 2/4×5 + ... + 2/101×102
B = 2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/101×102)
B = 2 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/101 - 1/102)
B = 2 × (1 - 1/102)
B = 2 × 101/102
B = 101/51
\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)
\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)
\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\) (Do 1 - 1/2017 < 1)
S = 1/2+1/2.3+1/3.4 +... +1/9/10
S =1/2+1/2-1/3+1/3+1/4+...+1/9-1/10
S =1-10
S =9/10
Do 9/10<1
=>S<1
S=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-(1/2-1/2)-(1/3-1/3)-(1/4-1/4)-...-(1/9-1/9)-1/10
=1-1/10<1
Vậy S<1
Lời giải:
Ta có:
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(A=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)
Vậy ta có đpcm.
\(b)\) Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\) ta có :
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}-0=\frac{1}{2}\)
\(\Rightarrow\)\(A< \frac{1}{2}\) ( đpcm )
Vậy \(A< \frac{1}{2}\)
Chúc bạn học tốt ~
\(a)\frac{9.25-63}{3.30+153}\)
\(=\frac{9.25-9.7}{3.30+3.51}\)
\(=\frac{9.\left(25-7\right)}{3.\left(30+51\right)}\)
\(=\frac{9.18}{3.81}\)
\(=\frac{1.6}{1.9}\)
\(=\frac{6}{9}\)
\(=\frac{2}{3}\)
b ) \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\left(Đpcm\right)\)
Chúc bạn học tốt !!!