K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: R-3=(x^2+x-1-3x)/x=(x-1)^2/x

Nếu x>0 thì R-3>0

=>R>3

Nếu x<0 thì R-3<0

=>R<3

c: Để R>4 thì R-4>0

=>\(\dfrac{x^2+x+1-4x}{x}>0\)

=>\(\dfrac{x^2-3x+1}{x}>0\)

TH1: x>0 và x^2-3x+1>0

=>x>0 và \(\left[{}\begin{matrix}x< \dfrac{3-\sqrt{5}}{2}\\x>\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\Leftrightarrow x>\dfrac{3+\sqrt{5}}{2}\)

mà x nguyên

nên x>3

TH2: x<0 và x^2-3x+1<0

=>x<0 và \(\dfrac{3-\sqrt{5}}{2}< x< \dfrac{3+\sqrt{5}}{2}\)(loại)

 

6 tháng 10 2015

Câu này bạn làm tương tự như câu trên nha

tick cho mình nha

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Lần sau bạn lưu ý gõ đề bằng công thức toán để được hỗ trợ tốt hơn.

Lời giải:

$x+\sqrt{x}+1>1$ với mọi $x>0, x\neq 1$

$\Rightarrow T=\frac{2}{x+\sqrt{x}+1}< 2$

$x+\sqrt{x}+1>0$ với mọi $x>0, x\neq 1$

$\Rightarrow T>0$

Vậy $0< T< 2$

$T$ nguyên $\Leftrightarrow T=1$

$\Leftrightarrow \frac{2}{x+\sqrt{x}+1}=1$

$\Leftrightarrow x+\sqrt{x}+1=2$

$\Leftrightarrow x+\sqrt{x}-1=0$

$\Rightarrow x=\frac{-1+\sqrt{5}}{2}$

$\Rightarrow x=\frac{3-\sqrt{5}}{2}$ (tm)

a: Ta có: \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Thay \(x=\dfrac{1}{4}\) vào P, ta được:

\(P=\left(\dfrac{1}{2}-1\right):\left(\dfrac{1}{2}+1\right)=\dfrac{-1}{2}:\dfrac{3}{2}=-\dfrac{1}{3}\)

c: Ta có: \(P< \dfrac{1}{2}\)

\(\Leftrightarrow P-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-2-\sqrt{x}-1}{2\left(\sqrt{x}+1\right)}< 0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

24 tháng 10 2017

Ý kiến mk thôi

Tìm x thuộc Z để x + 1/x thuộc Z,Tìm a; b thuộc Z để 2/a + 3/b = 5/6,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

24 tháng 10 2017

đơn giản b = 6 ;a=6

11 tháng 6 2016

ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x^2+x+1\ne0\end{cases}}\)

a/ \(R=1:\left[\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{x+1}{x^2+x+1}-\frac{1}{x-1}\right]\)

    \(=1:\left[\frac{x^2+2+\left(x+1\right)\left(x-1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\)

     \(=1:\left[\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left[\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\right]=1:\left(\frac{x}{x^2+x+1}\right)\)

       \(=\frac{x^2+x+1}{x}\)

b/ Ta có: \(R=\frac{x^2+x+1}{x}=3+\frac{\left(x-1\right)^2}{x}>3\)

                          Vậy R > 3