1.Cho Δ ABC có AB=3cm, AC=4cm, BC=5cm.
a/ Δ ABC là Δ gì?
b/ Vẽ BD là phân giác ∠. Trên cạnh BC lấy điểm E sao cho AB=AE. CM: AD=DE
c/ CM: AE⊥BD
d/ Kéo dài BA cắt ED tại F. CM: AE song song FC
2. Cho Δ ABC cân tại A. Kẻ AH⊥BC tại H
a/ CM: ΔABH\(=\)△ACH
b/ Vẽ trung tuyến BM. Gọi G là giao điểm của AH và BM. Chứng tỏ G là trọng tâm của ΔABC
c/ Cho AB=30, BH=18. Tính AH, AG
d/ Từ H kẻ HD song song với AC ( D ∈ AB). CM 3 điểm C, G, D thẳng hàng.
3. Cho Δ ABC⊥A. Biết AB=3, AC=4.
a/ Tính BC
b/ Gọi M là trung điểm của BC. Kẻ BH⊥AM tại H, CK⊥AM tại K. CM: ΔBHM=ΔCKM
c/ Kẻ HI⊥BC tại I. So sánh HI và MK
d/ So sánh BH+BK với BC