Cho các số tự nhiên a,b thỏa mãn \(\frac{a}{4}\)+\(\frac{b}{3}\)=\(\frac{a+b}{7}\). Tinh a x b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}=\frac{b}{a}+\frac{c}{b}+\frac{a}{c}=3\)
=>\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)=3+3=6\)
=>\(\left(\frac{a}{b}+\frac{c}{b}\right)+\left(\frac{b}{c}+\frac{a}{c}\right)+\left(\frac{c}{a}+\frac{b}{a}\right)=6\)
=>\(\left(\frac{a+c}{b}+1\right)+\left(\frac{b+a}{c}+1\right)+\left(\frac{c+b}{a}+1\right)-3=6\)
=>\(\left(\frac{a+b+c}{b}\right)+\left(\frac{a+b+c}{c}\right)+\left(\frac{a+b+c}{a}\right)=6+3=9\) (1)
Vì a+b+c=3 (theo đề) nên (1) có dạng: \(\frac{3}{b}+\frac{3}{c}+\frac{3}{a}=9\Leftrightarrow3.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=9\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{9}{3}=3\) (2)
Vì a,b,c là các số tự nhiên nên \(\frac{1}{a}\le1;\frac{1}{b}\le1;\frac{1}{c}\le1\)
=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1+1+1=3\) (3)
Từ (2);(3):
=>\(\frac{1}{a}=1\)=>a=1 .CM tương tự ta cũng có b=1;c=1
Vậy a=b=c=1
Tìm các bộ 3 số tự nhiên a, b, c khác 0 thỏa mãn:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Câu2:
Q = \(\frac{3}{3}-\frac{3}{5}+\frac{3}{5}-\frac{3}{7}+...+\frac{3}{47}-\frac{3}{49}\)
= \(\frac{3}{3}-\frac{3}{49}=\frac{46}{49}\)