Với mọi giá trị của x ta có x²+1<1 đúng hay sai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn thiếu 1 TH nha !
Thay x=-2015 vào bt ,ta được :
\(\left(x-1\right)^2=2016\left|x-1\right|\)
\(\Rightarrow2016^2=2016\left|x-1\right|\)
\(\Rightarrow\left|x-1\right|=2016\)
\(\Rightarrow TH1:x-1=2016\Rightarrow x=2017\)
\(TH2:x-1=-2016\Rightarrow x=-2015\)
Vậy \(x\in\left\{2017;-2015\right\}\)
x^2 = 2.x^(2-1) = 2x ( Lấy đâu ra?? )
Thay x= 1 ta có:
1^2 =2.1 => 1=2(?? từ đâu)
x=2 ta có:
2^2=2.2=4(đúng)
x=3 ta có:
3^2=2.3; 9=6 (?? sai rồi)
Xét hàm số f(x) thỏa mãn f(x)+3f(1/x)=x^2. với mọi x thuộc R.
Đúng với x = 2 . => f(2) + 3f(1/2) = 2^2 = 4
=> f(2) + 3f(1/2) = 4 ( 1 )
Đúng với x = 1/2 => f(1/2) + 3f(2) = (1/2)^2 = 1/4.
=> 3f(2) + f (1/2) = 1/4.=> 9f(2) + 3f(1/2) = 3/4 ( 2 )
Lấy (2) trừ (1) ta đc : 8 f(2) = 3/4 - 4 = -13/4
=> f(2) = -13 / 32
TXĐ:D=R
bpt nghiệm đúng với mọi x \(\in\)R
\(\Leftrightarrow-1\le\frac{x^2+5x+a}{2x^2-3x+2}<7\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}x^2+5x+a<7\left(2x^2-3x+2\right)\\x^2+5x+a\ge-\left(2x^2-3x+2\right)\end{cases}\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}13x^2-26x+14-a>0\\3x^2+2x+a+2\ge0\end{cases}\) với mọi \(x\in R\)
\(\Leftrightarrow\begin{cases}\Delta1<0;a1=13>0\\\Delta2\le0;a2=3>0\end{cases}\)
\(\Leftrightarrow\begin{cases}13^2-13\left(14-a\right)<0\\1^2-3\left(a+2\right)\le0\end{cases}\)
\(\Leftrightarrow\begin{cases}a<1\\a\ge\frac{-5}{3}\end{cases}\)
Kết hợp 2 ĐK rồi KL.
Đáp án C
Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy
Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.
Đáp án C
Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .
Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3 trên R
* Bước 1: Tập xác định D = ℝ . Đạo hàm y ' = 8 x 3 − 8 x .
* Bước 2: Cho y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .
* Bước 3: Ta có bảng biến thiên sau:
Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.
Ta có: a=123−17×5=123−85=38
Nếu a=38 thì 5772:4+a×8=5772:4+38×8=1443+304=1747.
Mà 1747<11848
Do đó kết luận giá trị của biểu thức 5772:4+a×8 với a=123−17×5 là 11848 sai.
Chú ý
Học sinh có thể thực hiện sai thứ tự thực hiện phép tính, tính lần lượt từ trái sang phải, từ đó tìm được kết quả là 11848 và chọn sai đáp án.
\(x^2+1\ge1\forall x\)<=>\(x^2+1< 1\left(sai\right)\)