Cho tam giác ABC vuông tại A có đường cao AH và đường phân giác trong BD.
a) Chứng minh tam giác BAH đồng dạng với tam giac BCA. Suy ra AH.BC=AB.AC
b) Chứng minh DA/DC=AH/AC
c) Qua C vẽ đường thẳng d song song với BD, từ B kẻ BE _|_d (E thuộc d), đường thẳng BE cắt AC tại F. Chứng minh DA.FC=DC.FA
d) Chứng minh tam giác ABE đồng dạng với tam giác BDC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBAH vuông tại H và ΔBCA vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔBAH\(\sim\)ΔBCA(g-g)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc HBA chung
Do đó: ΔABC\(\sim\)ΔHBA
b: Xét ΔCAI vuông tại A và ΔCHK vuông tại H có
\(\widehat{ACI}=\widehat{HCK}\)
Do đó: ΔCAI\(\sim\)ΔCHK
SUy ra: CA/CH=CI/CK
hay \(CA\cdot CK=CI\cdot CH\)
a: Xet ΔCHA vuông tại H và ΔCKB vuông tại K có
góc C chung
=>ΔCHA đồng dạng với ΔCKB
b: Xét ΔCAB có
AH,BK là đừog cao
AH cắt BK tại D
=>D là trực tâm
=>CD vuông góc AB tại E
góc CHA=góc CEA=90 độ
=>CHEA nội tiếp
=>góc BHE=góc BAC
mà góc HBE chung
nên ΔBEH đồng dạng với ΔBAC
c: góc KHD=góc ACE
góc EHA=góc KBA
mà góc ACE=góc KBA
nên góc KHD=góc EHD
=>HA là phân giác của góc EHK
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD*CB=CA*CE