K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: AB=AC(ΔABC cân tại A)

\(BD=\frac{1}{3}AB\)(gt)

\(CE=\frac{1}{3}AC\)(gt)

nên BD=CE(đpcm)

b) Xét ΔBDC và ΔCEB có

BD=CE(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(ΔABC cân tại A)

BC chung

Do đó: ΔBDC=ΔCEB(c-g-c)

\(\widehat{BDC}=\widehat{CEB}\)(hai góc tương ứng)

hay \(\widehat{BDI}=\widehat{CEI}\)(1)

Xét ΔDIB có \(\widehat{DIB}+\widehat{BDI}+\widehat{DBI}=180^0\)(định lí tổng ba góc trong một tam giác)(2)

Xét ΔEIC có \(\widehat{EIC}+\widehat{CEI}+\widehat{ECI}=180^0\)(định lí tổng ba góc trong một tam giác)(3)

\(\widehat{DIB}=\widehat{EIC}\)(hai góc đối đỉnh)(4)

nên từ (1), (2), (3) và (4) suy ra \(\widehat{DBI}=\widehat{ECI}\)

Xét ΔDIB và ΔEIC có

\(\widehat{DBI}=\widehat{ECI}\)(cmt)

DB=EC(cmt)

\(\widehat{BDI}=\widehat{CEI}\)(cmt)

Do đó: ΔDIB=ΔEIC(g-c-g)

⇒IB=IC(hai cạnh tương ứng)

Xét ΔIBC có IB=IC(cmt)

nên ΔIBC cân tại I(định nghĩa tam giác cân)

a: Xét ΔBEC và ΔCDB có 

BE=CD

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔBEC=ΔCDB

Suy ra: CE=DB

b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)

nên ΔGBC cân tại G

=>GB=GC

Ta có: GB+GD=BD

GE+GC=CE

mà BD=CE

và GB=GC

nên GD=GE

hay ΔGDE cân tại G

c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta có: GB=GC

nên G nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,G,M thẳng hàng

22 tháng 9 2023

A B C D E I F K G

a/

Xét tg BCD và tg CBD có

BD=CE (gt)

\(\widehat{ABC}=\widehat{ACB}\) (góc ở đáy tg cân ABC)

BC chung

=> tg BCD = tg CBD (c.g.c) => CD=BE (đpcm)

b/

tg BCD = tg CBD (cmt) \(\Rightarrow\widehat{IBC}=\widehat{ICB}\)

=> tg IBC cân tại I => IB=IC

Xét tg ABI và tg ACI có

IB=IC (cmt)

AI chung

AB=AC (cạnh bên tg cân ABC)

=> tg ABI = tg ACI (c.c.c) \(\Rightarrow\widehat{BAI}=\widehat{CAI}\)

=> AI là phân giác \(\widehat{A}\)

=> AI là trung trực của BC (trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)

c/

Ta có

AD=AB-BD

AE=AC-CE

Mà AB=AC; BD=CE

=> AD=AE

\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\) => DE//BC (Talet đảo trong tam giác)

d/

Từ E đựng đường thẳng // với AB cắt BC tại G

ta có

\(\widehat{EGC}=\widehat{ABC}\) (góc đồng vị)

Mà \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{EGC}=\widehat{ACB}\) => tg EGC cân tại E => GE=CE (cạnh bên tg cân)

Mà BD=CE (gt)

=> GE=BD mà BD=BF => GE=BF

Ta có 

GE//AB => GE//BF

=> BEGF là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)

=> KE=KF (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> K là trung điểm của EF

 

a: Xét ΔABD và ΔACE có 

AB=AC

\(\widehat{BAD}\) chung

AD=AE

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔEDC và ΔDEB có 

DE chung

\(\widehat{EDC}=\widehat{DEB}\)

DC=EB

Do đó: ΔEDC=ΔDEB

Suy ra: \(\widehat{GED}=\widehat{GDE}\)

hay ΔGED cân tại G

a: Kẻ DH và EK lần lượt vuông góc với BC

=>DH//EK

H,B lần lượt là hình chiếu của D,B trên BC

=>HB là hình chiếu của DB trên BC

K,C lần lượt là hình chiếu của E,C trên BC

=>KC là hình chiếu của EC trên BC

Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

DB=EC
góc DBH=góc ECK

=>ΔDHB=ΔEKC

=>BH=KC và DH=EK

b: Xét ΔABE và ΔACD có

AB=AC
góc BAE chung

AE=AD
=>ΔABE=ΔACD

=>BE=CD

c: Xét ΔMDB và ΔMEC có

góc MDB=góc MEC

DB=EC
góc MBD=góc MCE

=>ΔMDB=ΔMEC

d: Xét ΔABM và ΔACM có

AM chung

MB=MC

AB=AC

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

23 tháng 8 2023

còn câu e kìa bạn