cho x+y=2. Chứng minh \(x^2y^2\left(x^2+y^2\right)< =2\) (x,y>0)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
26 tháng 7 2019
a) Áp dụng bất đẳng thức Cô-si:
\(2=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\sqrt{xy}\le1\)
\(\Leftrightarrow xy\le1\)
Do \(x,y>0\Rightarrow xy>0\)
\(\Rightarrow0< xy\le1\)( đpcm )
b) Đề thiếu, cần thêm \(x+y=2\)và \(x,y>0\)
Áp dụng bất đẳng thức Cô-si :
\(x^2y^2\left(x^2+y^2\right)\)
\(=\frac{1}{2}\cdot xy\cdot2xy\cdot\left(x^2+y^2\right)\le\frac{1}{2}\cdot\frac{\left(x+y\right)^2}{4}\cdot\frac{\left(x^2+2xy+y^2\right)^2}{4}=\frac{1}{2}\cdot\frac{2^2}{4}\cdot\frac{2^4}{4}=2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
\(P=x^2y^2\left(x^2+y^2\right)=\frac{1}{2}xy.2xy\left(x^2+y^2\right)\)
\(\Rightarrow P\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{1}{4}\left(2xy+x^2+y^2\right)^2=\frac{1}{32}\left(x+y\right)^6=2\)
Dấu "=" xảy ra khi \(x=y=1\)