Cho \(\Delta ABC\)cân tại A. Vẽ \(AH\perp BC\) tại H
a) Chứng minh \(\Delta AHB=\Delta AHC\)
b) Vẽ \(HE\perp AB\)tại E, \(HF\perp AC\)tại F. Chứng minh HE=HF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAHB vuông tại H và ΔADH vuông tại D có
\(\widehat{DAH}\) chung
Do đó: ΔAHB\(\sim\)ΔADH(g-g)
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH cắt EF tại trung điểm của mỗi đường và AH=EF
=>OE=OF=AH/2
=>OE*OF=1/4*AH^2
=>4*OE*OF=AH^2=HB*HC
Lời giải:
Bạn tự vẽ hình giùm mình nhé.
a) Xét tam giác $BAC$ và $BHA$ có:
\(\left\{\begin{matrix} \widehat{BAC}=\widehat{BHA}=90^0\\ \text{chung góc B}\end{matrix}\right.\Rightarrow \triangle BAC\sim \triangle BHA(g.g)\)
b)
Xét tam giác $BAC$ và $AHC$ có:
\(\left\{\begin{matrix} \widehat{BAC}=\widehat{AHC}=90^0\\ \text{chung góc C}\end{matrix}\right.\Rightarrow \triangle BAC\sim \triangle AHC(g.g)\)
\(\Rightarrow \frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC\)
c)
Xét tam giác $HEA$ và $BHA$ có:
\(\left\{\begin{matrix} \widehat{HEA}=\widehat{BHA}=90^0\\ \widehat{EHA}=\widehat{HBA}(=90^0-\widehat{BHE})\end{matrix}\right.\)
\(\Rightarrow \triangle HEA\sim \triangle BHA(g.g)\)
\(\Rightarrow \frac{HA}{EA}=\frac{BA}{HA}\Rightarrow HA^2=AE.AB(1)\)
Hoàn toàn TT ta có: \(\triangle HFA\sim \triangle CHA\Rightarrow \frac{HA}{FA}=\frac{CA}{HA}\)
\(\Rightarrow HA^2=AF.AC(2)\)
Từ \((1)(2)\Rightarrow AF.AC=AE.AB\Rightarrow \frac{AE}{AF}=\frac{AC}{AB}\)
Tam giác $AFE$ và $ABC$ có:
\(\left\{\begin{matrix} \frac{AE}{AF}=\frac{AC}{AB}\\ \text{chung góc A}\end{matrix}\right.\Rightarrow \triangle AFE\sim \triangle ABC(c.g.c)\)
d)
Có: \(\widehat{MEB}=\widehat{AEF}=\widehat{ACB}\) (do \(\triangle AFE\sim \triangle ABC\) )
Xét tam giác $MEB$ và $MCF$ có:
\(\left\{\begin{matrix} \text{chung góc M}\\ \widehat{MEB}=\widehat{MCF}\end{matrix}\right.\Rightarrow \triangle MEB\sim \triangle MCF(g.g)\)
\(\Rightarrow \frac{ME}{MB}=\frac{MC}{MF}\Rightarrow ME.MF=MB.MC\)
- Ta có : \(\Delta ABC\) cân tại A .
=> AB = AC ( Tính chất tam giác cân )
=> \(\widehat{ABH}=\widehat{ACH}\) ( Tính chất tam giác cân )
- Xét \(\Delta AHB\) và \(\Delta AHC\) có :
\(\left\{{}\begin{matrix}AB=AC\left(cmt\right)\\\widehat{ABH}=\widehat{ACH}\left(cmt\right)\\AH=AH\end{matrix}\right.\)
=> \(\Delta AHB\) = \(\Delta AHC\) ( c - g -c )
b, Ta có : \(\Delta AHB\) = \(\Delta AHC\) ( câu a )
=> BH = CH ( cạnh tương ứng )
- Xét \(\Delta HMB\) và \(\Delta HNC\) có :
\(\left\{{}\begin{matrix}\widehat{HMB}=\widehat{HNC}\left(=90^o\right)\\BH=CH\left(cmt\right)\\\widehat{ABC}=\widehat{ACB}\left(cmt\right)\end{matrix}\right.\)
=> \(\Delta HMB\) = \(\Delta HNC\) ( Ch - Cgv )
=> MB = NC ( cạnh tương ứng )
Ta có : \(\left\{{}\begin{matrix}AB=AM+BM\\AC=AN+CN\end{matrix}\right.\)
Mà AB = AC (tam giác cân )
=> \(AM=AN\)
- Xét \(\Delta AMN\) có : AM = AN ( cmt )
=> \(\Delta AMN\) là tam giác cân tại A ( đpcm )
c, - Ta có : \(\Delta AMN\) cân tại A ( cmt )
=> \(\widehat{AMN}=\widehat{ANM}\)
Mà \(\widehat{AMN}+\widehat{ANM}+\widehat{MAN}=180^o\)
=> \(\widehat{2AMN}+\widehat{MAN}=180^o\)
=> \(\widehat{AMN}=\frac{180^o-\widehat{MAN}}{2}\) ( I )
- Ta có : \(\Delta ABC\) cân tại A .
=> \(\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
=> \(\widehat{2ABC}+\widehat{BAC}=180^o\)
=> \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) ( II )
Ta có : \(\widehat{ABC}=\widehat{AMN}\left(=\frac{180^o-\widehat{BAC}}{2}\right)\)
Mà 2 góc trên ở vị trí đồng vị .
=> MN // BC ( Tính chất 2 đoạn thẳng song song )
d, ( Hình vẽ câu trên nha )
- Áp dụng định lý pi - ta - go vào \(\Delta AHB\perp H\) có :
\(AH^2+BH^2=AB^2\)
a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.
Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.
Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.
b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2
Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.
c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)
Vậy, ta đã chứng minh AF = AE * tan(B).
d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB
Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)
Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB
Vậy, ta đã chứng minh CE/BF = AC/AB.
a/
*Cách 1:
Ta có: ΔABC cân tại A
=> AC = AB
Và: \(\widehat{ABC}=\widehat{ACB}\)
Hay: \(\widehat{ABH}=\widehat{ACH}\)
Xét 2 tam giác vuông ΔAHB và ΔAHC có:
AB = AC (cmt)
\(\widehat{ABH}=\widehat{ACH}\) (cmt)
Do đó: ΔAHB = ΔAHC (c.h - g.n)
*Cách 2:
Xét ΔAHB và ΔAHC có:
AB = AC (ΔABC cân tại A)
AH: cạnh chung
=> ΔAHB = ΔAHC (c.h - c.g.v)
b) Có: ΔAHB = ΔAHC (câu a)
=> HB = HC (2 cạnh tương ứng)
Và: \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Xét 2 tam giác vuông ΔEBH và ΔFCH ta có:
Cạnh huyền HB = HC (câu b)
\(\widehat{B}=\widehat{C}\) (ΔABC cân tại A)
=> ΔEBH = ΔFCH (c.h - g.n)
d) Sửa đề: EF // BC
Có: ΔEBH = ΔFCH (câu c)
=> EB = FC (2 cạnh tương ứng)
Có: \(\left\{{}\begin{matrix}AE+BE=AB\\AF+FC=AC\end{matrix}\right.\)
Mà: EB = FC (cmt) và AB = AC (ΔABC cân tại A)
=> AE = AF
=> ΔAEF cân tại A
=> \(\widehat{AEF}=\frac{180^0-\widehat{BAC}}{2}\) (1)
Có: ΔABC cân tại A
=> \(\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) => \(\widehat{ABC}=\widehat{AEF}\)
Mà 2 góc này lại là 2 góc đồng vị
=> EF // BC
Câu 4:
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra:HE=HF
a) Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( tam giác ABC cân tại A )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
b) Từ tam giác vuông AHB = tam giác vuông AHC
=> ^BAH = ^CAH ( hai góc tương ứng )
Xét tam giác vuông AHE và tam giác vuông AHF có :
AH chung
^BAH = ^CAH ( cmt )
=> tam giác vuông AHE = tam giác vuông AHF ( ch - gn )
=> HE = HF ( hai cạnh tương ứng )