A=1/2+1/4+1/6+........1/2010:A<1/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt B=1/1*2+1/2*3+...+1/2011*2012
ta có:A= 1/2^2 + 1/3^2 + 1/4^2 + .... + 1/2010^2 + 1/2011^2 + 1/2012^2<B=1/1*2+1/2*3+...+1/2011*2012 (1)
B=1/1*2+1/2*3+...+1/2011*2012
=1-1/2+1/2-1/3+...+1/2011-1/2012
=1-1/2012<1 (2)
từ (1) và (2) =>A<1
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2009.2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(=1-\frac{1}{2010}<1\)
\(\Rightarrowđpcm\)
TA CÓ:1/2^2=1/2/2<1/2.3;1/3^2=1/3.3<1/2.3
1/4=1/4.4<1/3.4,...,1/2010^2=1/2010<1/2009.2010
DO ĐÓ:1/2^2+1/3^2+1/4^2+...+1/2010^2<1/1.2+1/2.3+1/3.4+...+1/2009.2010
MÀ 1/1.2+1/2.3+1/3.4+...+1/2009+2010
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2009-1/2010=1-1/2010<1
Vậy 1/2^2+1/3^2+1/4^2+...+1/2010^2<1
1. Bạn xem lại, hạng tử cuối là $2^{2010}$ hay $2^{2011}$
2.
Vì $x\vdots 4$ nên $x=4k$ với $k$ nguyên.
Ta có: $2010< x< 2025$
$\Rightarrow 2010< 4k< 2025$
$\Rightarrow 502,5< k< 506,25$
$\Rightarrow k\in \left\{503; 504; 505; 506\right\}$
$\Rightarrow x\in \left\{2012; 2016; 2020; 2024\right\}$