giải phương trình sau
\(|x-2|+|2-x|=10\)
mong ai đó guisp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:\(x\ge1\)
Bình phương 2 vế ta được
\(2\left(x^2+2x+3\right)^2=25\left(x^3+3x^2+3x+2\right)\)
\(\Leftrightarrow2\left(x^4+4x^2+9+4x^3+12x+6x^2\right)=25\left(x^3+3x^2+3x+2\right)\)
\(\Leftrightarrow2x^4-17x^3-55x^2-51x-32=0\)
\(\Leftrightarrow x^2\left(2x^2-17x-55\right)-51x-32=0\)
\(\Delta=256x^2-2176x-4439\)
\(=\left(16x-68\right)^2-9063\)
Để pt có nghiệm thì \(\Delta\)là số chính phương
\(\Rightarrow\left(16x-68\right)^2-9063=k^2\left(k\in N\right)\)
\(\Leftrightarrow\left(16x-68-k\right)\left(16x-68+k\right)=9063=1007.9=1.9063\)
Mặt khác k,x \(\ge\)0 nên
\(16x-68-k< 16x-68+k\)
Từ đó có 2 TH
*\(\hept{\begin{cases}16x-68-k=1\\16x-68+k=9063\end{cases}\Leftrightarrow}x=\frac{575}{2}\left(tm\right)\)
*\(\hept{\begin{cases}16x-68-k=9\\16x-68+k=1007\end{cases}\Leftrightarrow}x=36\left(tm\right)\)
Vậy.........................
ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ bài này hok phải phương trình nghiệm nguyên nên em nghĩ chắc gì \(\Delta=k^2?!?\)
Em thì dạng này cứ liên hợp làm tới thôi:v Nhưng ko chắc:v
Nhận xét x = -2 không phải là nghiệm, xét x khác -2
ĐK: \(x>-2\)
Bớt 10x + 20= 5(2x + 4) ở cả hai vế
PT \(\Leftrightarrow2x^2-6x-14=5\left(\sqrt{x^3+3x^2+3x+2}-\left(2x+4\right)\right)\)
\(\Leftrightarrow2\left(x^2-3x-7\right)=5.\frac{x^3-x^2-13x-14}{\sqrt{x^3+3x^2+3x+2}+2x+4}\)
\(\Leftrightarrow2\left(x^2-3x-7\right)=\frac{5\left(x+2\right)\left(x^2-3x-7\right)}{\sqrt{x^3+3x^2+3x+2}+2x+4}\)
\(\Leftrightarrow\left(x^2-3x-7\right)\left(2-\frac{5\left(x+2\right)}{\sqrt{x^3+3x^2+3x+2}+2x+4}\right)=0\)
*Giải cái ngoặc to \(\Leftrightarrow2\sqrt{x^3+3x^2+3x+2}-\left(x+2\right)=0\)
\(\Leftrightarrow2\sqrt{\left(x+2\right)\left(x^2+x+1\right)}-\left(x+2\right)=0\)
\(\Leftrightarrow\sqrt{x+2}\left(2\sqrt{\left(x^2+x+1\right)}-1\right)=0\)
\(\Leftrightarrow\left(2\sqrt{\left(x^2+x+1\right)}-1\right)=0\)(vì x > -2 nên \(\sqrt{x+2}>0\))
Ta có: \(VT=2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}-1\ge2\sqrt{\frac{3}{4}}-1>0\)
Do đó cái ngoặc to vô nghiệm.
Còn lại cái ngoặc nhỏ và bí:)
Chắc đúng rồi nhỉ:))
a)2x^3+3x^2-x-1=0
\(\Leftrightarrow\)(2x^3+3x^2)-(x-1)
\(\Leftrightarrow\)2x^2(x+3)-(x-1)
ĐẾN ĐÂY CHẢ BIT NHÂN TỬ CHUNG LÀ SỐ NÀO NỮA HÌNH NHƯ SAI ĐỀ
<=> (x2 - 2x)2 + x2 - 2x + 1 - 13 = 0
<=> (x2 - 2x)2 + x2 - 2x - 12 = 0
Đặt t = x2 - 2x
Khi đó ta có pt: t2 + t - 12 = 0
<=> t2 + 4t - 3t - 12 = 0
<=> (t - 3)(t + 4) = 0 <=> \(\orbr{\begin{cases}t=3\\t=-4\end{cases}}\)
*Với t = 3 ta có: x2 - 2x = 3
<=> x2 - 2x - 3 = 0
<=> (x - 3)(x + 1) = 0 <=> \(\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
*Với t = -4 ta có: x2 - 2x = -4
<=> x2 - 2x + 4 = 0
<=> (x - 1)2 + 3 = 0 (Vô nghiệm)
Vậy S = {3;-1}
(x2-2x)2 + (x-1)2 - 13 = 0
<=> x^4 - 4x^3 + 4x^2 + x^2 - 2x + 1 - 13 = 0
<=> x^3 - 4x^3 + 5x^2 - 2x - 12 = 0
<=> x^4 + x^3 - 5x^3 - 5x^2 + 10x^2 + 10x - 12x - 12 = 0
<=> x^3(x + 1) - 5x^2(x + 1) + 10x(x + 1) - 12(x + 1) = 0
<=> (x^3 - 5x^2 + 10x - 12)(x + 1) = 0
<=> (x^3 - 3x^2 - 2x^2 + 6x + 4x - 12)(x + 1) = 0
<=> [x^2(x - 3) - 2x(x - 3) + 4(x - 3)](x + 1) = 0
<=> (x^2 - 2x + 4)(x - 3)(x + 1) = 0
có x^2 - 2x + 4 = (x - 1)^2 + 3 lớn hơn 0
<=> x - 3 = 0 hoặc x + 1 = 0
<=> x = 3 hoặc x = -1
\(\frac{x+1}{2x-2}-\frac{x-1}{2x+2}=\frac{2}{x^2-1}\)
\(ĐKXĐ:x\ne\pm1\)
\(\Leftrightarrow\frac{\left(x+1\right)\left(2x+2\right)}{4\left(x^2-1\right)}-\frac{\left(x-1\right)\left(2x-2\right)}{4\left(x^2-1\right)}=\frac{8}{4\left(x^2-1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(2x+2\right)-\left(x-1\right)\left(2x-2\right)=8\)
\(\Leftrightarrow2x^2+2x+2x+2-2x^2+2x+2x-2=8\)
\(\Leftrightarrow8x=8\)
\(\Leftrightarrow x=1\)(0 TM)
Vậy phương trình trên vô nghiệm
#hoktot<3#
ta có ; x-3/2015 -1 +x-2/2016 -1 = x-2016/2 -1 +x-2015/3-1
x-2018/2015 + x-2018/2016 = x-2018/2 +x-2018/3
(x-2018)*(1/2015+1/2016-1/2-1/3)=0
vi (1/2015+1/2016-1/2-1/3) luon khac 0
suy ra : x-2018 = 0 suy ra x=2018
\(\frac{x-3}{2015}+\frac{x-2}{2016}=\frac{x-2016}{2}+\frac{x-2015}{3}\)
trừ 2 vế với 2, ta có:
\(\frac{x-3}{2015}+\frac{x-2}{2016}-2=\frac{x-2016}{2}+\frac{x-2015}{3}-2\)
\(\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)=\left(\frac{x-2016}{2}-1\right)+\left(\frac{x-2015}{3}-1\right)\)
\(\frac{x-2018}{2015}+\frac{x-2018}{2016}=\frac{x-2018}{2}+\frac{x-2018}{3}\)
\(\left(x-2018\right)\frac{1}{2015}+\left(x-2018\right)\frac{1}{2016}=\left(x-2018\right)\frac{1}{2}+\left(x-2018\right)\frac{1}{3}\)
\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}\right)=\left(x-2018\right)\left(\frac{1}{2}+\frac{1}{3}\right)\)
\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(x-2018\right)\left(\frac{1}{2}+\frac{1}{3}\right)=0\)
\(\left(x-2018\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\)
Mà \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\ne0\)
\(\Rightarrow x-2018=0\Leftrightarrow x=2018\)
Vậy tập nghiệm của PT là\(S=\left\{2018\right\}\)