Cho f(x)=x2+(m+2)x+8m+1
Tìm số nguyên của tham số m để f(x)>0 với mọi x
A.26
B.27
C.28
D.29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với m=−1m=−1 thì PT f(x)=0f(x)=0 có nghiệm x=1x=1 (chọn)
Với m≠−1m≠−1 thì f(x)f(x) là đa thức bậc 2 ẩn xx
f(x)=0f(x)=0 có nghiệm khi mà Δ′=m2−2m(m+1)≥0Δ′=m2−2m(m+1)≥0
⇔−m2−2m≥0⇔m(m+2)≤0⇔−m2−2m≥0⇔m(m+2)≤0
⇔−2≤m≤0⇔−2≤m≤0
Tóm lại để f(x)=0f(x)=0 có nghiệm thì m∈[−2;0]
Câu 1 : a/Δ Δ = (m+2)2 - 4(-1)(-4) = m2 +2m -12
ycbt <=> Δ > 0 <=> m2 +2m-12 > 0
<=> m < -1-\(\sqrt{13}\) ; m > -1+\(\sqrt{13}\)
Vậy giá trị cần tìm m ∈ (-∞; -1-\(\sqrt{13}\) ) U (-1+\(\sqrt{13}\) ; +∞)
b/ Δ = m2 +2m-12
ycbt <=> Δ < 0 <=> m2 +2m-12 < 0
<=> -1-\(\sqrt{13}\)<m< -1+\(\sqrt{13}\)
Câu 2 .
a/ Thay m=2 vào bpt ta được : 2x2+(2-1)x+1-2 >0
<=> 2x2 + x -1 > 0 <=> x < -1 ; x > \(\frac{1}{2}\)
\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)
\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)
\(\Leftrightarrow-7m^2+38m-15< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)
\(KL:m\in\left(5;+\infty\right)\)