So sánh các số
A= 333^444
B= 444^333
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nha bạn chúc bẠN CHÚC BẠN HỌC TỐT NHA
a) 10^30 và 2^100
Ta có: 10^30 = (10^3)^10 = 1000^10
2^100 = (2^10)^10 = 1024^10
Do 1024^10 > 1000^10 => 2^100 > 10^30
b) 333^444 và 444^333
Ta có: 333^444 = 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
c) 3^450 =(3^3)^150 =27^150
5^300=(5^2)^150=25^150
vì 27^150 >25^150 =>3^450 > 5^300
vậy 3^450 > 5^300
a) \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Mà \(1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)
b) \(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Mà \(81^{100}< 125^{100}\Rightarrow3^{400}< 5^{300}\)
c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Mà \(81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)
A=(3.111)4.111=(34)111.(1114)111=81111.(111444
B=(4.111)3.111=(43)111.(1113)111=64111.111333
81111>64111; 111444>111333 => A>B
Ta có :
\(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Vì \(81^{111}>64^{111}\) và \(111^{444}>111^{333}\)
nên \(81^{111}.111^{444}>64^{111}.111^{333}\)
Vậy \(333^{444}>444^{333}\)
tích mình nha !!!
A=333^444=111^3.444=111^1332
B=444^333=111^4.333=111^1332
=>A=B
a) Do 300 < 450
⇒ 3³⁰⁰ < 3⁴⁵⁰
b) 333⁴⁴⁴ = (333⁴)¹¹¹ = (111⁴.3⁴)¹¹¹
444³³³ = (444³)¹¹¹ = (111³.4³)¹¹¹
Do 4 > 3 nên 111⁴ > 111³ (1)
Lại có:
3⁴ = 81
4³ = 64
Do 81 > 64 nên 3⁴ > 4³ (2)
Từ (1) và (2) ⇒ 111⁴.3⁴ > 111³.4³
⇒ (111⁴.3⁴)¹¹¹ > (111³.4³)¹¹¹
Vậy 333⁴⁴⁴ > 444³³³
A=333^444
A=(333^4)^111
A=1332^111
B=444^333
B=(444^3)^111
B=1332^111
Vì 1332^111=1332^111
Nên => A=B
333^444=333^(4.111)=(333^4)^111
444^333=444^(3.111)=(444^3)^111
So sánh 333^4 với 444^3:
333^4=(111.3)^4=111^4.3^4=111^4.81
444^3=(111.4)^3=111^3.4^3=111^3.64
Vì 111^4.81>111^3.64 => 333^4>444^3 => A>B.
\(A=333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(B=444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Vì 81111 > 64111 và 111444 > 111333
=> 81111.111444 > 64111.111333
hay 333444 > 444333
Vậy A > B.
Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
Ta có: A=333^444=(333^4)^111
B=444^333=(444^3)^111
A và B đã có cùng số mũ 111. Bây giờ ta so sánh 333^4 với 444^3:
333^4=(3x111)^4=3^4x111^4=81x111^4
444^3=(4x111)^3=4^3x111^3=64x111^3
Rõ ràng ta thấy 81x111^4>64x111^3 suy ra 333^4>444^3
Từ đó suy ra A>B.
Ta có:333^444=(3x111)^4x111
333^444=(3^4)^111
333^444=81^111
Ta có:444^333=(4x111)^3x111
444^333=(4^3)^111
444^333=64^111
Vì 81 > 64.Nên 81^111 > 64^111
Vậy 333^444 > 444^333.
Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
Ok.Chúc bạn học giỏi và thành công nha!!!