K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2023

giúp mik với. Cần gấp ạaaaa

2 tháng 5 2023

A. Để chứng minh rằng $\triangle ABH \sim \triangle CAH$, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác này bằng nhau.

Ta có:

  • Góc $\angle BAH$ là góc vuông, nên $\angle BAH = \angle CAH = 90^\circ$.
  • Cạnh chung $AH$ của hai tam giác này có độ dài bằng nhau.

Vậy, theo định lí góc - cạnh - góc, ta có:

$$\frac{AB}{AH} = \frac{10}{AH} = \frac{AH}{AC} = \frac{AH}{16}$$

Từ đó suy ra:

$$\frac{AB}{AH} = \frac{AH}{AC} \Rightarrow \triangle ABH \sim \triangle CAH$$

B. Ta có:

  • Tỉ số đồng dạng giữa hai tam giác $\triangle ABH$ và $\triangle ABC$ là:

$$k = \frac{AB}{AC} = \frac{10}{16} = \frac{5}{8}$$

  • Tỉ số đồng dạng giữa hai tam giác $\triangle CAH$ và $\triangle ABC$ là:

$$k' = \frac{AC}{AB} = \frac{16}{10} = \frac{8}{5}$$

Vậy, ta đã suy ra được tỉ số đồng dạng giữa các cạnh của ba tam giác $\triangle ABH$, $\triangle CAH$ và $\triangle ABC$.

Do đó, ta có:

$$BC = AB \times k' = 10 \times \frac{8}{5} = 16$$

$$AH = AC \times k = 16 \times \frac{5}{8} = 10$$

C. Để tính diện tích của các tam giác này, ta sử dụng công thức:

$$S = \frac{1}{2} \times cạnh\ gần\ đáy \times độ\ cao$$

  • Diện tích của tam giác $\triangle ABH$ là:

$$S_{ABH} = \frac{1}{2} \times AB \times AH = \frac{1}{2} \times 10 \times 10 = 50\ cm^2$$

  • Diện tích của tam giác $\triangle CAH$ là:

$$S_{CAH} = \frac{1}{2} \times AC \times AH = \frac{1}{2} \times 16 \times 10 = 80\ cm^2$$

  • Diện tích của tam giác $\triangle ABC$ là:

$$S_{ABC} = \frac{1}{2} \times AB \times AC = \frac{1}{2} \times 10 \times 16 = 80\ cm^2$$

2 tháng 5 2023

giúp mình với. Cần gấp ạaaaaaa

a: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc ABH=góc CAH

=>ΔABH đồng dạng vói ΔCAH

=>k=AB/CA=5/8

\(BC=\sqrt{10^2+16^2}=2\sqrt{89}\left(cm\right)\)

\(AH=\dfrac{10\cdot16}{2\sqrt{89}}=\dfrac{80}{\sqrt{89}}\left(cm\right)\)

c: \(S_{ABC}=\dfrac{1}{2}\cdot10\cdot16=80\left(cm^2\right)\)

\(HB=\dfrac{10^2}{2\sqrt{89}}=\dfrac{50}{\sqrt{89}}\left(cm\right)\)

=> S ABH=2000/89(cm2)

=>S ACH=5120/89cm2

2 tháng 5 2023

cần gấp ạaaaaaaaaaa

30 tháng 4 2023

giải giùm em câu c với d là đc ạ

1: Xet ΔABC và ΔHBA có

góc ABC chung

góc BAC=góc BHA

=>ΔABC đồng dạng với ΔHBA

2: \(BC=\sqrt{12^2+16^2}=20\)

AH=16*12/20=9,6

BH=12^2/20=7,2

3: góc AMN=góc HMB=90 độ-góc CBN

góc ANM=90 độ-góc ABN

mà góc CBN=góc ABN

nên góc AMN=góc ANM

=>ΔAMN cân tại A

 

a: Xét ΔHMN và ΔHAB có

\(\dfrac{HM}{HA}=\dfrac{HN}{HB}\)

\(\widehat{MHN}\) chung

Do đó: ΔHMN đồng dạng với ΔHAB

b:

Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{HBA}\right)\)

Do đó: ΔHAB đồng dạng với ΔHCA

=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)

=>\(HA^2=HB\cdot HC\)

 \(HM\cdot HA=\dfrac{1}{2}\cdot HA\cdot HA=\dfrac{1}{2}HA^2\)

\(HN\cdot HC=\dfrac{1}{2}\cdot HB\cdot HC=\dfrac{1}{2}\cdot HA^2\)

Do đó: \(HM\cdot HA=HN\cdot HC\)

c: \(HM\cdot HA=HN\cdot HC\)

=>\(\dfrac{HN}{HM}=\dfrac{HA}{HC}\)

Xét ΔHAN vuông tại H và ΔHCM vuông tại H có

\(\dfrac{HA}{HC}=\dfrac{HN}{HM}\)

Do đó: ΔHAN đồng dạng với ΔHCM

15 tháng 3 2021

a/ Xét \(\Delta HAC\) và \(\Delta ABC\) có

\(\widehat{BAH}=\widehat{ACH}\) (Vì cùng phụ với \(\widehat{HAC}\) ) => \(\Delta BAH\) đồng dạng với \(\Delta ABC\)

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\Rightarrow AH.BC=AB.AC\left(dpcm\right)\)

b/ Ta có

\(HK=CK;HI=AI\) => KI là đường trung bìcuarHHAC tg HAC => KI//AC\(\Rightarrow\widehat{HKI}=\widehat{BCA}\)

Xét tg vuông HKI và tg vuông ABC có

\(\widehat{HKI}=\widehat{BAC}\left(cmt\right)\) => tg HKI đồng dạng với tg ABC