K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2015

cái này ko phải đối xứng loại 1 ợ

19 tháng 12 2015

\(\int^{x+2y-xy=2}_{x^2+y^2=5}\Leftrightarrow\int^{x+y\left(2-x\right)=2}_{x^2+y^2=5}\Leftrightarrow\int^{\left(1-y\right)\left(x-2\right)=0}_{x^2+y^2=5}\)  <=> x = 2 và y = 1. Thử lại thấy thỏa mãn PT thứ hai. Vậy HPT có nghiệm (x;y) = (2;1)

18 tháng 12 2015

 

a) Với a =2 

ta có HPT <=>  \(\int^{x+y=2}_{x^2+y^2=2}\Leftrightarrow\int^{x+y=2}_{\left(x+y\right)^2-2xy=2}\Leftrightarrow\int^{x+y=2}_{xy=1}\Rightarrow x=y=1\) S= { (1;1)}

b) \(HPT\Leftrightarrow\int^{x+y=a}_{\left(x+y\right)^2-2xy=6-a^2}\Leftrightarrow\int^{x+y=a}_{xy=a^2-3}\)

x ; y là nghiệm của pt : X2 -aX+(a2-3) =0 => \(\Delta\)=a2 -4a2 +12 = -3a2 +12 >/0 => -2 </a</ 2 \(F=xy+2\left(x+y\right)=a^2-3+2a=\left(a+1\right)^2-4\ge-4\)=> F min = -4 khi  a =-1 (TM)

\(F=xy+2\left(x+y\right)=a^2-3+2a\le4-3+2.2=5\) khi a =2

26 tháng 12 2015

ĐK 0 <= x <= 2 ; y >= 0 

(1) => \(x+2y-x+2\sqrt{x\left(2y-x\right)}=4y\)

    <=> \(2\sqrt{2xy-x^2}=2y\Leftrightarrow2xy-x^2=y^2\Leftrightarrow y^2-2xy+x^2=0\Leftrightarrow y=x\)

Với y = x thay vào (2) ta có :

 \(\sqrt[3]{y}+\sqrt{2-y}=2\)

5 tháng 6 2016

Khó hiểugianroi

6 tháng 6 2016

chẳng hiểu cái j cảuccheoho

NV
16 tháng 11 2019

ĐKXĐ: ...

\(xy+x+y=x^2-2y^2\Leftrightarrow x^2-xy-2y^2-\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)-\left(x+y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\left(vn\right)\\x=2y+1\end{matrix}\right.\)

\(\Rightarrow\left(2y+1\right)\sqrt{2y}-y\sqrt{2y}=2\left(2y+1\right)-2y\)

\(\Leftrightarrow\sqrt{2y}\left(y+1\right)=2\left(y+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+1=0\left(l\right)\\\sqrt{2y}=2\end{matrix}\right.\) \(\Rightarrow y=2\Rightarrow x=5\)

29 tháng 10 2019

\(\hept{\begin{cases}x+\frac{3}{x}+y-\frac{2}{y}=5\\x^2+\frac{9}{x^2}+y^2+\frac{4}{y^2}=15\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x+\frac{3}{x}+y-\frac{2}{y}=5\\\left(x+\frac{3}{x}\right)^2+\left(y-\frac{2}{y}\right)^2=17\end{cases}}\)

Đặt \(\hept{\begin{cases}x+\frac{3}{x}=a\\y-\frac{2}{y}=b\end{cases}}\) \(\Rightarrow\hept{\begin{cases}a+b=5\\a^2+b^2=17\end{cases}}\) \(\Rightarrow\left(a;b\right)=\left(1;4\right);\left(4;1\right)\)

\(\Rightarrow...\)

30 tháng 10 2019

thanks

2 tháng 2 2017

\(\left\{\begin{matrix}x^2+x-xy-2y=0\\x^2+y^2=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{\begin{matrix}\left(x+y+1\right)\left(2y-x\right)=0\\x^2+y^2=1\end{matrix}\right.\)

Với x + y + 1 = 0 \(\Rightarrow\)x = - y - 1 thế vô pt dưới được

\(\left(-y-1\right)^2+y^2=1\)

\(\Leftrightarrow\left[\begin{matrix}y=0\\y=-1\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

Với 2y - x = 0 \(\Rightarrow\)2y = x thế vào pt dưới được

\(\left(2y\right)^2+y^2=1\)

\(\Leftrightarrow\left[\begin{matrix}y=\frac{1}{\sqrt{5}}\\y=-\frac{1}{\sqrt{5}}\end{matrix}\right.\)

\(\Rightarrow\left[\begin{matrix}x=\frac{2}{\sqrt{5}}\\x=-\frac{2}{\sqrt{5}}\end{matrix}\right.\)