So sánh phân số
\(\frac{2015x2016-1}{2015x2016}\)và\(\frac{2016x2017-1}{2016x2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Ta có 1 − 2 x + 2015 x 2016 − 2016 x 2017 − 2017 x 2018 60 = ∑ k = 0 60 1 − 2 x k ..... 80 − k
Số hạng chứa x 3 trong khai triển là hệ số x 3 trong khai triển 1 − 2 x 80 . ..... 0
Khi đó số hạng chứa x 3 trong khai triển là: C 60 3 1 80 − 3 . 2 x 3 = − 8. C 60 3 x 3
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2015\times2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}=\frac{2015}{2016}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}+\frac{1}{2016\cdot2017}\)
\(\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{2016-2015}{2015\cdot2016}+\frac{2017-2016}{2016\cdot2017}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2016}-\frac{1}{2017}\)(làm gọn một chút)
\(1-\frac{1}{2017}=\frac{2016}{2017}\)
A = 1X2 +2x3 +...+ 2016x2107
3A = 1x2x3 + 2x3x3 + ...+ 2016x2017x3
3A = 1x2x(3-0) + 2x3x(4-1) + ... + 2016x2017x(2018-1)
3A = 1x2x3 - 1x2x0 +2x3x4 -1x2x3 +...+ 2016x2017x2018 - 2016x2017x2015
Ta loại trừ còn
3A = 2016x2017x2018 - 1x2x0
3A = 2016x2017x2018
A = 2016 x2017 x2018 : 3
A = 1x2 +2x3 +3x4 +...+ 2016 x 2017
3A = 1x2x3 + 2x3x3 +...+2016 x 2017 x3
3A = 1x2x(3-0) + 2x3x(4-1) +...+ 2016x2017x(2018-2015)
\(A=1-\frac{1}{2014x2015}\)
\(B=1-\frac{1}{2015x2016}\)
\(2014x2015< 2015x2016\Rightarrow\frac{1}{2014x2015}>\frac{1}{2015x2016}\Rightarrow A< B\)
=225x0
=0
= 28x104-1728
= 291-1728
=1184