Rút gọn đa thức :
(-1/2x2y3)2.4x25(-y3)(-1)5(x3)2(-y)(-1/7)3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=-\dfrac{5}{4}\cdot\dfrac{2}{5}\cdot x^3\cdot x^2\cdot x^3\cdot y\cdot y^4=\dfrac{-1}{2}x^8y^5\)
hệ số là -1/2
bậc là 13
b: \(B=\dfrac{-3}{4}x^5y^4\cdot xy^2\cdot\dfrac{-8}{9}x^2y^5=\dfrac{2}{3}x^8y^{11}\)
Hệ số là 2/3
Bậc là 19
c: \(C=-x^6y^3\cdot\dfrac{1}{2}x^2y^3\cdot4x^2y^4z^2=-2x^{10}y^{10}z^2\)
Hệ số là -2
Bậc là 22
d: \(D=-\dfrac{1}{27}x^3y^6\cdot\left(-a\right)xy=\dfrac{1}{27}ax^4y^7\)
Hệ số là 1/27a
Bậc là 11
\(A=-\dfrac{1}{2}x^8y^5\)bậc 13;hế số -1/2
\(B=\dfrac{2}{3}x^8y^{11}\)bậc 19
\(C=\left(-x^6y^3\right).\dfrac{1}{2}x^2y^3\left(4x^2y^4z^2\right)=-2x^{10}y^{13}z^2\)bậc 25 ; hệ số -2
\(D=\left(-\dfrac{1}{27}x^3y^6\right)\left(-axy\right)=\dfrac{a}{27}x^4y^7\)bậc 11 ; hệ số 1/27
Q = x - y 3 + y + x 3 + y - x 3 – 3xy(x + y)
= x 3 – 3 x 2 y + 3x y 2 – y 3 + y 3 + 3 y 2 .x + 3y x 2 + x 3 + y 3 – 3 y 2 .x +3y x 2 – x 3 – 3 x 2 y – 3x y 2
= x 3 – 3 x 2 y + 3x y 2 – y 3 + y 3 + 3.x y 2 + 3 x 2 .y + x 3 + y 3 – 3x. y 2 + 3 x 2 .y – x 3 – 3 x 2 y – 3x y 2
= ( x 3 + x 3 – x 3 )+ ( - 3 x 2 y + 3 x 2 y+ 3 x 2 y – 3 x 2 y)+ (3x y 2 + 3x y 2 - 3x y 2 - 3x y 2 ) + (- y 3 + y 3 + y 3 )
= x 3 + 0 x 2 y + 0.x y 2 + y 3
= x 3 + y 3
Bài 1:
a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)
\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)
b.
\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)
Bài 2:
\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)
\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)
\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)
\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)
\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)
Lời giải:
\(A=\frac{x^3-y^3-z^3-3xyz}{(x+y)^2+(y-z)^2+(x+z)^2}=\frac{(x-y)^3+3xy(x-y)-z^3-3xyz}{x^2+y^2+2xy+y^2-2yz+z^2+z^2+x^2+2xz}\)
\(=\frac{(x-y)^3-z^3+3xy(x-y-z)}{2x^2+2y^2+2z^2+2xy-2yz+2xz}=\frac{(x-y-z)[(x-y)^2+z(x-y)+z^2]+3xy(x-y-z)}{2(x^2+y^2+xy-yz+xz)}\)
\(=\frac{(x-y-z)[(x-y)^2+z(x-y)+z^2+3xy]}{2(x^2+y^2+xy-yz+xz)}=\frac{(x-y-z)(x^2+y^2+z^2+xy-yz+xz)}{2(x^2+y^2+z^2+xy-yz+xz)}=\frac{x-y-z}{2}\)
1: \(=\dfrac{x-1}{x^2+x+1}+\dfrac{x+1}{x-1}\)
\(=\dfrac{x^2-2x+1+x^3+x^2+x^2+x+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^3+3x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
2: \(=\dfrac{\left(x^2-y^2\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{\left(x-y\right)\left(x+y\right)^2}{x^2+xy+y^2}\)
a) x⁴ + 2x² + 1
= (x²)² + 2.x².1 + 1²
= (x² + 1)²
b) 4x² - 12xy + 9y²
= (2x)² - 2.2x.3y + (3y)²
= (2x - 3y)²
c) -x² - 2xy - y²
= -(x² + 2xy + y²)
= -(x + y)²
d) (x + y)² - 2(x + y) + 1
= (x + y)² - 2.(x + y).1 + 1²
= (x - y + 1)²
e) x³ - 3x² + 3x - 1
= x³ - 3.x².1 + 3.x.1² - 1³
= (x - 1)³
g) x³ + 6x² + 12x + 8
= x³ + 3.x².2 + 3.x.2² + 2³
= (x + 2)³
h) x³ + 1 - x² - x
= (x³ + 1) - (x² + x)
= (x + 1)(x² - x + 1) - x(x + 1)
= (x + 1)(x² - x + 1 - x)
= (x + 1)(x² - 2x + 1)
= (x + 1)(x - 1)²
k) (x + y)³ - x³ - y³
= (x + y)³ - (x³ + y³)
= (x + y)³ - (x + y)(x² - xy + y²)
= (x + y)[(x + y)² - x² + xy - y²]
= (x + y)(x² + 2xy + y² - x² + xy - y²)
= (x + y).3xy
= 3xy(x + y)
\(\left(-\frac{1}{2}x^2y^3\right)^2\cdot4x^{25}\left(-y\right)^3\left(-1\right)^5\left(x^3\right)^2\left(-y\right)\left(-\frac{1}{7}\right)^3\)
\(=\frac{1}{4}x^4y^6\cdot4x^{25}\left(-y\right)^3\cdot\left(-1\right)x^6\left(-y\right)\left(-\frac{1}{7}\right)\)
\(=\left(\frac{1}{4}\cdot4\cdot\left(-1\right)\cdot\left(-\frac{1}{7}\right)\right)\left(x^4x^{25}x^6\right)\left(y^6\right)\left(-y\right)^3\left(-y\right)\)
\(=\frac{1}{7}x^{35}y^6y^4=\frac{1}{7}x^{35}y^{10}\)
Quỳnh sai nhé \(\left(-\frac{1}{7}\right)^3=\left(-\frac{1}{7}\right)\)xem lại.
\(\left(-\frac{1}{2}x^2y^3\right)^2.4x^{25}\left(-y^3\right)\left(-1\right)^5\left(x^3\right)^2\left(-y\right)\left(-\frac{1}{7}\right)^3\)
\(=\frac{1}{4}x^4y^6.4x^{25}\left(-y^3\right)\left(-1\right)x^6\left(-y\right)\left(-\frac{1}{343}\right)\)
\(=\frac{1}{343}x^{35}y^{10}\)
Sai đâu ib nhé, vì mt hòng ko tính đc cứ nhẩm nhẩm thôi.