K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

Ta có

A =n[n2(n2 -7)2 -36]= n[(n3 -7n2)-36]

= n(n3 -7n2 -6)( n3 -7n2 +6)

Mà n3 -7n2 -6 = (n+1) (n+2) (n-3)

n3 -7n2 +6 = (n-1)(n-2)(n+3)

Do đó:

A= (n-3)(n-2)(n-1)(n+1)(n+2)(n+3)

Đây là tích của 7 số nguyên liên tiếp.Trong 7 số nguyên liên tiếp

+Tồn tại một  bội của 5 ⇒ A chia hết cho 5

+Tồn tại một bội của 7 ⇒ A chia hết cho 7

+Tồn tại hai bội của 3 ⇒ A chia hết cho 9

+Tồn tại ba bội số của 2,trong đó có một bội số của 4 ⇒ A chia hết cho 16

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho

5.7.9.16 =5040.

+ Qua ví dụ 1 rút ra cách làm như sau:

Gọi A(n) là một biểu thức phụ thuộc vào n (n ∈ N hoặc n ∈ Z).

1 tháng 6 2021

n^3-n^2+2n+7=(n^3+n)-(n^2+1)+n+8=n(n^2+1)-(n^2+1)+n+8. Để n(n^2+1)-(n^2+1)+n+8 chia hết cho n^2+1=>8+n chia hết cho n^2+1
Vậy n=2k hoặc 2k+1
Xét TH:n=2k
=>8+n=8+2k(1)
*n^2+1=(2k)^2+1=4k^2+1(2)
Từ (1) và (2) ta có:8+2k chia hết cho 2 mà 4k^2+1 không chia hết cho 2 nên n ko bằng 2k
Xét TH:n=2k+1=>8+n=8+2k+1(3)
*n^2+1=(2k+1)^2+1
n^2+1=(4k^2+1)+(2k+1)(4)
Từ 3 và 4 : muốn 8+n chia hết n^2 +1 thì 8 chia hết cho   4k^2+1
=>4k^2+1 thuộc{-1;+1;-2;+2;-4;+4;-8;8}
các bạn làm từng TH thì sẽ ra k=0 và n=1 và các bạn thế vào đề bài lai để kiểm tra kết quả

9 tháng 7 2021

a) Ta có n3 - n + 4 

= n(n2 - 1) + 4

= (n - 1)n(n + 1) + 4 

Vì (n - )n(n + 1) \(⋮3\)(tích 3 số nguyên liên tiếp) 

mà 4 \(⋮̸\)

=> n3 - n + 4 không chia hết cho 3

Bài 2: 

\(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)

26 tháng 10 2022

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

7 tháng 2 2018

Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.

21 tháng 10 2016

\(x^3\left(x^2-7\right)^2-36x=x^3\left(x^4-14x^2+49\right)-36x\)

=\(x^7-14x^5+49x^3-36x\)

=\(x^7-x^6+x^6-x^5-13x^5+13x^4-13x^4+13x^3+36x^3-36x\)

=\(x^6\left(x-1\right)+x^5\left(x-1\right)-13x^4\left(x-1\right)-13x^3\left(x-1\right)+36x\left(x^2-1\right)\)

=\(x\left(x-1\right)\left(x^5+x^4-13x^3-13x^2+36x+36\right)\)

=\(x\left(x-1\right)\left[x^4\left(x+1\right)-13x^2\left(x+1\right)+36\left(x+1\right)\right]\)

=\(x\left(x-1\right)\left(x+1\right)\left(x^4-13x^2+36\right)\)

đặt x^2 =a (a>=0) thì xét đa thức \(x^4-13x^2+36=a^2-13a+36\)

xét \(\Delta=b^2-4ac=169-4.36=25\)

\(\Delta>0\)→phương trình có 2 nghiệm riêng biệt là \(\left[\begin{array}{nghiempt}a_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{13+5}{2}=9\\a_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{13-5}{2}=4\end{array}\right.\)(t/m a>=0)

vậy bt ban đầu :\(x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)\left(x^2-9\right)\)

=\(\left(x-3\right)\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

NV
18 tháng 9 2021

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

NV
21 tháng 3 2023

\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7n\right)^2-36\right]\)

\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\left(n-1\right)\left(n+3\right)\)

\(\Rightarrow A\) là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7

7 tháng 11 2021

giúp mình với bucminh

 

 

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)

hay \(n\in\left\{0;8;-8\right\}\)