K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

Câu hỏi gì xàm quá vậy

29 tháng 2 2020

a) Giả sử ta kẻ My \(\perp\)BC cắt Bx tại A'

Kết hợp với ^CBx = 450 suy ra \(\Delta\)A'MB vuông cân tại M

=> \(\frac{BM}{BA'}=\frac{1}{\sqrt{2}}\)Lại có \(\frac{BM}{BA}=\frac{1}{\sqrt{2}}\)nên \(BA'\equiv BA\)

\(\Rightarrow A'\equiv A\)nên AM \(\perp\)BC

Kết hợp với CI \(\perp\)AD suy ra N là trực tâm của \(\Delta\)ADC

Suy ra DN \(\perp\)AC (đpcm)

b) Xét \(\Delta\)AMB và \(\Delta\)AMC có:

   MB = MC (gt)

   ^AMB = ^AMC ( = 900)

  AM : cạnh chung

Do đó \(\Delta\)AMB = \(\Delta\)AMC (c.g.c)

=> AB = AC (hai cạnh tương ứng) và ^MBA = ^MCA (=450) => ^BAC = 900

Xét \(\Delta\)AIC (^AIC = 900) và \(\Delta\)AHB (^AHB = 900) có:

    AB = AC (cmt) 

    ^ABH = ^ACI (cùng phụ với ^BAH)

Do đó \(\Delta\)CIA = \(\Delta\)AHB (ch-gn)

=> AI = BH

=> BH2 + CI2 = AI2 +CI2 =AC2 (không đổi)

c) Xét \(\Delta\)BHM và \(\Delta\)AIM có:

    AI = BH (cmt)

    ^HBM = ^IAM (cùng phụ với hai cặp góc đối đỉnh là ^BDH và ^ADM)

   BM = AM (cmt)

Do đó \(\Delta\)BHM = \(\Delta\)AIM

=> HM = IM (1) và ^HMB = ^IMA 

Mà ^IMA + ^IMD = 900 nên ^HMB + ^IMD = 900 (2)

Từ (1) và (2) suy ra \(\Delta\)HMI vuông cân tại M => ^HIM = 450

Lại có ^HIC = 900 nên IM là phân giác của ^HIC

Vậy tia phân giác của góc HIC luôn đi qua một điểm cố định M (đpcm)

    

17 tháng 10 2020

giúp toi với tôi đang cần gấp

14 tháng 6 2017

tại sao mình k thể xem câu trả lờ của mọi người được nhỉ

26 tháng 8 2017

tại nó quá khó bạn ơi

5 tháng 12 2017
Bài 35 sgk toán 7 phải k lý lệ anh hồng