y x 5 -y = 97,6
ai giúp mình với :/\
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 5 + y + 5 + x + 5 + y + 5 = ?
( x + y ) + ( x + y ) + 5 + 5 + 5 + 5 = ?
20 + 20 + 5 + 5 + 5 + 5 = 60
chúc bạn hok tốt!!!
tick mk nhaa!!!
1. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)
2. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)
\(\hept{\begin{cases}\frac{y}{2}-\frac{\left(x+y\right)}{5}=0,1\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0.1\end{cases}}\)
\(\hept{\begin{cases}\frac{\left(x+y\right)}{5}=\frac{y-0,2}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x+y=\frac{5y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
\(\hept{\begin{cases}x=\frac{5y-1}{2}-\frac{2y}{2}=\frac{3y-1}{2}\\\frac{y}{5}-\frac{\left(x-y\right)}{2}=0,1\end{cases}}\)
Ta thay x vào biểu thức \(\frac{y}{5}-\frac{\left(x-y\right)}{2}\)ta đc
\(\frac{y}{5}-\frac{\left(\frac{3y-1}{2}-y\right)}{2}=0,1\)
\(\frac{3y-1-2y}{2}=\frac{y}{5}-\frac{0,5}{5}\)
\(\frac{y-1}{2}=\frac{y-0,5}{5}\)
\(5y-5=2y-1\Leftrightarrow5y-5-2y+1=0\Leftrightarrow3y-4=0\Leftrightarrow y=\frac{4}{3}\)
Thay y vào biểu thức \(\frac{3y-1}{2}\)ta đc
\(x=\frac{3.\frac{4}{3}-1}{2}=\frac{3}{2}\)
Vậy \(\left\{x;y\right\}=\left\{\frac{3}{2};\frac{4}{3}\right\}\)
Tính chất dãy tỉ số bằng nhau:
\(\frac{x}{3}=\frac{y}{5}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\frac{1}{4}\Rightarrow x=\frac{3}{4}\\\frac{y}{5}=\frac{1}{4}\Rightarrow y=\frac{5}{4}\end{cases}}\)
đề này mới đúng nha \(\dfrac{x}{5}=\dfrac{y}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
⇒\(\left\{{}\begin{matrix}x=3.5=15\\y=3.2=6\end{matrix}\right.\)
giả sử mình có ví dụ này bạn hiểu và làm được bài đó của bạn chứ
f ) x + y = x . y = x : y
Ta có :
Mặt khác , x : y = x + y ( gt )
Vậy x =
a,Vì y tỉ lệ thuận với x theo hệ số tỉ lệ k⇒y=k.x⇒k=\(\dfrac{y}{x}\)=\(\dfrac{30}{6}\)=5Vậy hệ số tỉ lệ của y đối với x là 5b,Khi x=-2 thì y=5.(-2)=-10 Khi x=-1 thì y=5.(-1)=-5 Khi x=2 thì y=5.2=10c,Ta có y=k.x⇒x=\(\dfrac{y}{k}\) Khi y=-10 thì x=\(\dfrac{-10}{5}\)=-2 Khi y=-5 thì x=\(\dfrac{-5}{5}\)=-1 Khi y=5 thì x=\(\dfrac{5}{5}\)=1
Ta có :*x(x+y+z) = - 5 (1)
* y(x+y+z) = 9 (2)
* z(x+y+z)=5 (3)
Từ (1) ; (2) và (3) , ta có :
x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 + 5
Dựa vào tính chất phân phối của phép nhân đối với phép cộng , ta có :
(x+y+z) . (x+y+z) = 9
\(\Rightarrow\left(x+y+z\right)^2=9\)
\(\Rightarrow x+y+z=3\) hoặc x +y+z=-3
\(-\) TRƯỜNG HỢP : x+y+z =3 :
* từ (1) có : x(x+y+z=3 ) = -5 và x+y+z=3 => x = \(\frac{x\left(x+y+z\right)}{x+y+z}=-\frac{5}{3}\)
* từ (2) có : y(x+y+z) =9 và x+y+z=3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{3}=3\)
* từ (3) có : z(x+y+z) = 5 và x+y+z=3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{3}\)
\(-\) TRƯỜNG HỢP x +y+z=-3 :
* từ (1) có x(x+y+z=3 ) = -5 và x+y+z=-3 \(\Rightarrow x=\frac{x\left(x+y+z\right)}{x+y+z}=\frac{-5}{-3}=\frac{5}{3}\)
* từ (2) có : y(x+y+z) =9 và x+y+z=-3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{-3}=-3\)
* từ (3) có : z(x+y+z) =5 và x+y+z=-3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{-3}\)
Đảm bảo đúng 100% . K MIK NHA MN!
Đặt
\(x.\left(x+y+z\right)=-5\) (1)
\(y.\left(x+y+z\right)=9\) (2)
\(x.\left(x+y+z\right)=5\) (3)
Cộng (1);(2);(3) với nhau ta được
\(x.\left(x+y+z\right)+y.\left(x+y+z\right)+z.\left(x+y+z\right)=\left(x+y+z\right).\left(x+y+z\right)\)
\(=\left(x+y+z\right)^2=\left(-5\right)+9+5=9=3^2=\left(-3\right)^2\)
Suy ra \(x+y+z=3\)hoặc \(x+y+z=-3\)
Thay \(x+y+z=3\)vào (1) ta được \(x.3=-5\Rightarrow x=-\frac{3}{5}\)
Thay\(x+y+z=3\)vào (2) ta được \(y.3=9\Rightarrow y=3\)
Thay \(x+y+z=3\)vào (3) ta được \(z.3=5\Rightarrow z=\frac{3}{5}\)
Ta có \(\left(x;y;z\right)=\left(-\frac{3}{5};3;\frac{3}{5}\right)\)
Thay \(x+y+z=-3\)vào (1) ta được \(x.\left(-3\right)=05\Rightarrow x=\frac{3}{5}\)
Thay \(x+y+z=-3\)vào (2) ta được \(y.\left(-3\right)=9\Rightarrow y=-3\)
Thay \(x+y+z=-3\)vào (3) ta được \(z.\left(-3\right)=5\Rightarrow x=-\frac{3}{5}\)
Ta có \(\left(x;y;z\right)=\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)
Vậy các cặp \(\left(x;y;z\right)\)thỏa mãn là : \(\left(-\frac{3}{5};3;\frac{3}{5}\right)\)và \(\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)
=>\(\dfrac{3}{x-5}-\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{9-y\left(x-5\right)}{3\left(x-5\right)}=\dfrac{1}{6}\)
=>9-y(x-5)=1/2(x-5)
=>(x-5)(1/2+y)=9
=>(x-5)(2y+1)=18
=>\(\left(x-5;2y+1\right)\in\left\{\left(18;1\right);\left(-18;-1\right);\left(2;9\right);\left(-2;-9\right);\left(6;3\right);\left(-6;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(23;0\right);\left(-13;-1\right);\left(7;4\right);\left(3;-5\right);\left(11;1\right);\left(-1;-2\right)\right\}\)
y x 5 - y = 97,6
y x 5 - y x 1 = 97,6
y x ( 5 -1 ) = 97,6
y x 4 = 97,6
y = 97,6 : 4
y = 24,4
bú lồl\(cócáilôl\)