Cho \(3x^2+2y^2\le\dfrac{6}{35}\). Tìm GTLN của \(P=3x-2y\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(S^2=(2x+3y)^2\leq (3x^2+2y^2)\left(\frac{4}{3}+\frac{9}{2}\right)\leq \frac{6}{35}(\frac{4}{3}+\frac{9}{2})=1\)
\(\Rightarrow S\leq 1\)
Vậy $S_{\max}=1$. Giá trị này đạt tại \(\left\{\begin{matrix} 3x^2+2y^2=\frac{6}{35}\\ \frac{3}{2}x=\frac{2}{3}y\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{4}{35}\\ y=\frac{9}{35}\end{matrix}\right.\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(S^2=(2x+3y)^2\leq (3x^2+2y^2)\left(\frac{4}{3}+\frac{9}{2}\right)\leq \frac{6}{35}(\frac{4}{3}+\frac{9}{2})=1\)
\(\Rightarrow S\leq 1\)
Vậy $S_{\max}=1$. Giá trị này đạt tại \(\left\{\begin{matrix} 3x^2+2y^2=\frac{6}{35}\\ \frac{3}{2}x=\frac{2}{3}y\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{4}{35}\\ y=\frac{9}{35}\end{matrix}\right.\)
Từ tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{3x+2}{3}=\dfrac{2y-6}{9}=\dfrac{\left(3x+2\right)+\left(2y-6\right)}{3+9}=\dfrac{3x+2y-4}{12}=\dfrac{3x+2y-4}{6x}\)
Suy ra 6x = 12 <=> x = 12 : 6 = 2
Khi đó \(\dfrac{3x+2}{3}=\dfrac{3\cdot2+2}{3}=\dfrac{8}{3}\)
Suy ra \(\dfrac{2y-6}{9}=\dfrac{8}{3}\Leftrightarrow2y-6=\dfrac{8\cdot9}{3}=24\)
\(\Leftrightarrow2y=24+6=30\Leftrightarrow y=30:2=15\)
Vậy x = 2; y = 15
Sửa đề nhé\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(z+x\right)+\left(z+y\right)+\left(x+y\right)+\left(x+y\right)}\)
\(\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}\right)\)
CMTT và cộng theo vế:
\(VT\le\dfrac{1}{16}\left(\dfrac{1}{x+z}+\dfrac{1}{z+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{y+z}\right)\)
\(=\dfrac{1}{16}.24=\dfrac{3}{2}\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{4}\)
Cho \(0< x< y\le z\le1\) và \(3x+2y+z\le4\). Tìm Max \(S=3x^2+2y^2+z^2\) - Hoc24
Tham khảo
Khai triển Abel ta có:
\(S=\left(z-y\right)z+\left(y-x\right)\left(z+2y\right)+x\left(3x+2y+z\right)\)
\(\le\left(z-y\right).1+\left(y-x\right).3+4x=x+2y+z\)
\(=\left(1-1\right)z+\left(1-\dfrac{1}{3}\right)\left(2y+z\right)+\dfrac{1}{3}\left(3x+2y+z\right)\)
\(\le\dfrac{2}{3}.3+\dfrac{1}{3}.4=\dfrac{10}{3}\)
Dấu = xảy ra khi \(x=\dfrac{1}{3},y=z=1\)
\(S=x\left(3x+2y+z\right)+\left(y-x\right)\left(2y+z\right)+\left(z-y\right).y\)
\(S\le4x+3\left(y-x\right)+z-y=x+2y+z\)
\(S\le\dfrac{1}{3}\left(3x+2y+z\right)+\dfrac{2}{3}\left(2y+z\right)\le\dfrac{1}{3}.4+\dfrac{2}{3}.3=\dfrac{10}{3}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{3};1;1\right)\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
a, \(\dfrac{x^3+27}{x^2-3x+9}=\dfrac{x+3}{M}\Leftrightarrow\dfrac{\left(x+3\right)\left(x^2-3x+9\right)}{x^2-3x+9}=\dfrac{x+3}{M}\)
\(\Rightarrow M=\dfrac{x+3}{x+3}=1\)
b, \(\dfrac{M}{x+4}=\dfrac{x^2-8x+16}{16-x^2}=\dfrac{\left(x-4\right)^2}{\left(4-x\right)\left(x+4\right)}=\dfrac{4-x}{x+4}\)
\(\Rightarrow M=\dfrac{\left(4-x\right)\left(x+4\right)}{x+4}=4-x\)
c, tương tự
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(P^2=(3x-2y)^2\le (3x^2+2y^2)(3+2)\leq \frac{6}{35}.5=\frac{6}{7}\)
\(\Rightarrow P\leq \sqrt{\frac{6}{7}}\)
Vậy \(P_{\max}=\sqrt{\frac{6}{7}}\) khi \((x,y)=(\frac{1}{5}\sqrt{\frac{6}{7}}, -\frac{1}{5}\sqrt{\frac{6}{7}})\)