Cho xy + yz + xz =1 .Tìm Min S= 3(x^2+y^2)+z^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Thêm điều kiện x; y; z > 0
B1: Tìm điểm rơi
B2: Dùng cô - si
\(S=3\left(x^2+y^2\right)+z^2=\left(2x^2+\frac{1}{2}z^2\right)+\left(2y^2+\frac{1}{2}z^2\right)+\left(x^2+y^2\right)\)
\(\ge2.\sqrt{x^2z^2}+2.\sqrt{y^2z^2}+2.\sqrt{x^2y^2}\)
\(=2\left(xy+yz+zx\right)=2\)
Dấu "=" xảy ra <=> \(x=y=\frac{1}{\sqrt{5}};z=\frac{2}{\sqrt{5}}\)