K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

Câu 1. thiếu đề đó bạn ạ 

Câu 2: 

Ta có: x^3+15x^2+74x+120 

=(x^3+4x^2) + (11x^2+44x) + (30x+120)

=(x+4)(x^2+11x+30)

=(x+4)(x+5)(x+6)

Ta có bảng xét dấu 

x -6 -5 -4 
x+4-|-|-|+
x+5-|-|+|+
x+6-|+|+|+

Để (x+4)(x+5)(x+6)<0 

Khi có chỉ 1 số âm hoặc cả 3 số âm

<=> x<-6 hoặc -5<x<-4

 

10 tháng 4 2021

hok bt nx đề amsterdam ak

 

19 tháng 12 2015

2)  2x4-21x3+74x2-105x+50=0

<=>(2x4-2x3)+(-19x3+19x2)+(55x2-55x)+(-50x+50)=0

<=>2x3.(x-1)-19x2.(x-1)+55x.(x-1)-50.(x-1)=0

<=>(x-1)(2x3-19x2+55x-50)=0

<=>(x-1)[(2x3-20x2+50x)+(x2+5x-50)]=0

<=>(x-1)[2x.(x-5)2+(x2-5x+10x-50)]=0

<=>(x-1){2x.(x-5)2+[x.(x-5)+10.(x-5)]}=0

<=>(x-1)[2x.(x-5)2+(x-5)(x+10)]=0

<=>(x-1)(x-5)(2x2-10x+x+10)=0

<=>(x-1)(x-5)(2x2-5x-4x+10)=0

<=>(x-1)(x-5)[x.(2x-5)-2.(2x-5)]=0

<=>(x-1)(x-5)(x-2)(2x-5)=0

<=>x=1 hoặc x=5 hoặc x=2 hoặc x=5/2

25 tháng 2 2019

mình chịu thôi!lêu...lêu...lêu

22 tháng 6 2023

\(x^2-4=2\left(x-2\right)\left(x+3\right)\)

\(\Leftrightarrow x^2-4=2\left(x^2+3x-2x-6\right)\)

\(\Leftrightarrow x^2-4=2x^2+2x-12\)

\(\Leftrightarrow x^2-2x^2-2x=-12+4\)

\(\Leftrightarrow-x^2-2x=-8\)

\(\Leftrightarrow-x^2-2x+8=0\)

\(\Leftrightarrow-x^2+2x-4x+8=0\)

\(\Leftrightarrow-x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(-x-4\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x-4=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)

Vậy \(S=\left\{-4;2\right\}\)

22 tháng 6 2023

\(x^2-4=2\left(x-2\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=2\left(x-2\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)-2\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[\left(x+2\right)-2\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-2x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Bài 1: 

a) Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot m\cdot\left(m+2\right)\)

\(\Leftrightarrow\Delta=4m^2-4m+1-4m^2-8m\)

\(\Leftrightarrow\Delta=-12m+1\)

Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow-12m+1=0\)

\(\Leftrightarrow-12m=-1\)

hay \(m=\dfrac{1}{12}\)

b) Ta có: \(\Delta=\left(4m+3\right)^2-4\cdot2\cdot\left(2m^2-1\right)\)

\(\Leftrightarrow\Delta=16m^2+24m+9-16m^2+8\)

\(\Leftrightarrow\Delta=24m+17\)

Để phương trình có nghiệm kép thì \(\Delta=0\)

\(\Leftrightarrow24m+17=0\)

\(\Leftrightarrow24m=-17\)

hay \(m=-\dfrac{17}{24}\)

30 tháng 8 2017

29 tháng 10 2022

b: =x^3+6x^2+9x^2+54x+20x+120

=(x+6)(x^2+9x+20)

=(x+6)(x+4)(x+5)

a: Đa thức này không phân tích được nha bạn

Y
26 tháng 5 2019

b) \(\Leftrightarrow x^2\left(x^2+2x-2\right)-3x\left(x^2+2x-2\right)-2\left(x^2+2x-2\right)=0\)

\(\Leftrightarrow\left(x^2-3x-2\right)\left(x^2+2x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x-2=0\\x^2+2x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\frac{3}{2}\right)^2=\frac{17}{4}\\\left(x+1\right)^2=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{3}{2}=\frac{\sqrt{17}}{2}\\x-\frac{3}{2}=-\frac{\sqrt{17}}{2}\\x+1=\sqrt{3}\\x+1=-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{17}}{2}\\x=\frac{3-\sqrt{17}}{2}\\x=\sqrt{3}-1\\x=-1-\sqrt{3}\end{matrix}\right.\) ( TM )

Y
26 tháng 5 2019

a) Dễ thấy x = 0 không là nghỉ=ệm của pt đã cho

Chia cả 2 vế của pt cho \(x^2\ne0\) ta đc :

\(2x^2-21x+74-\frac{105}{x}+\frac{50}{x^2}=0\)

\(\Leftrightarrow2\left(x^2+\frac{25}{x^2}+10\right)-21\left(x+\frac{5}{x}\right)+54=0\)

\(\Leftrightarrow2\left(x+\frac{5}{x}\right)^2-21\left(x+\frac{5}{x}\right)+54=0\)

\(\Leftrightarrow2t^2-21t+54=0\) ( với \(t=x+\frac{5}{x}\) )

\(\Leftrightarrow\left(2t-9\right)\left(t-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{9}{2}\\t=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+\frac{5}{x}=\frac{9}{2}\\x+\frac{5}{x}=6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-\frac{9}{2}x+5=0\\x^2-6x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\frac{9}{4}\right)^2=\frac{1}{16}\\\left(x-1\right)\left(x-5\right)=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{9}{4}=\frac{1}{4}\\x-\frac{9}{4}=-\frac{1}{4}\\x-1=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=2\\x=1\\x=5\end{matrix}\right.\) ( TM )

Vậy tập nghiệm của pt đã cho là \(S=\left\{\frac{5}{2};2;1;5\right\}\)