K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

ngu quá

2 tháng 10 2016

dễ như thế mà ko biết làm

24 tháng 6 2017

XÉT TAM GIÁC ABC có ACB =\(\frac{1}{2}\)(180o-80o)=50o

=>ACE=ABC-BCE=50o-25o=25o

=>AEC=180-80-25=75o

XÉT TAM GIÁC AEC VÀ TAM GIÁC AFB CÓ AB=AC(GT)

                                                                  BAC CHUNG

                                                                AE=AF(AB=AC,AE=1/2AB,AF=1/2AC)

=>TAM GIÁC AEC =TAM GIÁC AFB

=>AFB=AEC ( 2 CẠNH TG ỨNG = NHAU) MÀ AEC=75o

=>AFB=75o

bạn tự vẽ hình 

 k cho mk nha

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

hay AE=AD(1) và BD=BE

Ta có: D và F đối xứng nhau qua AC(gt)

nên AC là đường trung trực của DF

hay AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔAEB và ΔADB có 

AE=AD(cmt)

AB chung

BE=BD(cmt)

Do đó: ΔAEB=ΔADB(c-c-c)

Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)

Xét ΔADC và ΔAFC có

AD=AF(cmt)

AC chung

CD=CF(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)

Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot60^0=120^0\)

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

Suy ra: AD=AE(1) và BD=BE

Ta có: F và D đối xứng nhau qua AC(gt)

nên AC là đường trung trực của FD

Suy ra: AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔABE và ΔABD có 

AB chung

AE=AD(cmt)

BE=BD(cmt)

Do đó: ΔABE=ΔABD(c-c-c)

Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)

Xét ΔADC và ΔAFC có 

AD=AF(cmt)

AC chung

DC=FC(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)

Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot60^0=120^0\)

a) Ta có: E và D đối xứng nhau qua AB(gt)

nên AB là đường trung trực của ED

Suy ra: AD=AE(1) và BD=BE

Ta có: F và D đối xứng nhau qua AC(gt)

nên AC là đường trung trực của FD

Suy ra: AD=AF(2) và CD=CF

Từ (1) và (2) suy ra AE=AF

b) Xét ΔABE và ΔABD có 

AB chung

AE=AD(cmt)

BE=BD(cmt)

Do đó: ΔABE=ΔABD(c-c-c)

Suy ra: \(\widehat{EAB}=\widehat{DAB}\)(hai góc tương ứng)

Xét ΔADC và ΔAFC có 

AD=AF(cmt)

AC chung

DC=FC(cmt)

Do đó: ΔADC=ΔAFC(c-c-c)

Suy ra: \(\widehat{DAC}=\widehat{FAC}\)(hai góc tương ứng)

Ta có: \(\widehat{EAF}=\widehat{EAB}+\widehat{BAD}+\widehat{CAD}+\widehat{FAC}\)

\(=2\cdot\left(\widehat{BAD}+\widehat{CAD}\right)\)

\(=2\cdot60^0=120^0\)

31 tháng 8 2017
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1) b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c) =(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc) c)Đặt x-y=a;y-z=b;z-x=c a+b+c=x-y-z+z-x=o đưa về như bài b d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y) =x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)