Chứng minh \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)
C1\(VT=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=VP\)
Dấu bằng xảy khi a=b=c
C2 Áp dụng cosi ta có :
\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge3a^2\);\(\frac{b^3}{c}+\frac{b^3}{c}+c^2\ge3b^2\); \(\frac{c^3}{a}+\frac{c^3}{a}+a^2\ge3c^2\)
Cộng 3 vế của 3 BĐT ta được ĐPCM
\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge a^2+b^2+c^2\)