8(x+1/x)^2 = (x+4)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 1/3 x 1/2 x 3/7 = 1/6 x 3/7 = 1/14
2) 5/4 x 1/3 + 1/7 = 5/12 + 1/7 = 47/84
3) 8 x (8/9 - 2/3) = 8 x 2/9 = 16/9
4) 5/6 x 48/20 x 1/2 = 2 x 1/2 = 1
5) (2/5 + 3/4) x 8 = 23/20 x 8 = 46/5
6) 10 x (1/2 - 1/5) = 10 x 3/10 = 3
Bạn nên viết đề bằng công thức toán và ghi đầy đủ yêu cầu đề để mọi người hiểu đề của bạn hơn nhé.
a) \(\left(x+8\right)^2-2\left(x+8\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left[\left(x+8\right)-\left(x-2\right)\right]^2\)
\(=\left(x+8-x+2\right)^2\)
\(=10^2\)
\(=100\)
\(b,=\left(x+8-x+2\right)^2=100\\ c,=x^2\left(x^2-16\right)-x^4+1=x^4-16x^2-x^4+1=1-16x^2\\ d,=x^3+1-x^3+1=2\)
b) \(=\left(x+8-x+2\right)^2=10^2=100\)
c) \(=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=1-16x^2\)
d) \(=x^3+1-x^3+1=2\)
1x2= 2 1x2x3=6 1x2x3x4=24 1x2x3x4x5=120 1x2x3x4x5x6=720 1x2x3x4x5x6x7=5040
1x2x3x4x5x6x7x8=40320 1x2x3x4x5x6x7x8x9=362880 1x2x3x4x5x6x7x8x9x10=3628800
1 x 2 = 2
1 x 2 x 3 = 6
1 x 2 x 3 x 4 = 24
1 x 2 x 3 x 4 x 5 = 120
1 x 2 x 3 x 4 x 5 x 6 = 720
1 x 2 x 3 x 4 x 5 x 6 x 7 = 5040
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 = 40320
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 362880
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 = 3628800
1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)
\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)
3, \(x^4-5x^2+4\)
Đặt \(x^2=t\left(t\ge0\right)\)ta có :
\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)
\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
`Answer:`
1. `45+x^3-5x^2-9x`
`=x^3+3x^2-8x^2-24x+15x+45x`
`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`
`=(x+3).(x^2-8x+15)`
`=(x+3).(x^2-5x-3x+15)`
`=(x-3).(x-5).(x-3)`
2. `x^4-2x^3-2x^2-2x-3`
`=x^4+x^3-3x^3+x^2+x-3x-3`
`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`
`=(x+1).(x^3-3x^2+x-3)`
`=(x+1).[x^3 .(x-3).(x-3)]`
`=(x+1).(x-3).(x^2+1)`
3. `x^4-5x^2+4`
`=x^4-x^2-4x^2+4`
`=x^2 .(x^2-1)-4.(x^2-1)`
`=(x^2-1).(x^2-4)`
`=(x-1).(x+1).(x-2).(x+2)`
4. `x^4+64`
`=x^4+16x^2+64-16x^2`
`=(x^2+8)^2-16x^2`
`=(x^2+8-4x).(x^2+8+4x)`
5. `x^5+x^4+1`
`=x^5+x^4+x^3-x^3+1`
`=x^3 .(x^2+x+1)-(x^3-1)`
`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`
`=(x^2+x+1).(x^3-x+1)`
6. `(x^2+2x).(x^2+2x+4)+3`
`=(x^2+2x)^2+4.(x^2+2x)+3`
`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`
`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`
`=(x^2+2x+1).(x^2+2x+3)`
`=(x+1)^2 .(x^2+2x+3)`
7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`
`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`
`=x^6+8x^4+19x^3+30x^2+88x+64`
8. `x^3 .(x^2-7)^2-36x`
`=x[x^2.(x^2-7)^2-36]`
`=x[(x^3-7x)^2-6^2]`
`=x.(x^3-7x-6).(x^3-7x+6)`
`=x.(x^3-6x-x-6).(x^3-x-6x+6)`
`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`
`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`
`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`
`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`
`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`
9. `x^5+x+1`
`=x^5-x^2+x^2+x+1`
`=x^2 .(x^3-1)+(x^2+x+1)`
`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`
`=(x^2+x+1).(x^3-x^2+1)`
10. `x^8+x^4+1`
`=[(x^4)^2+2x^4+1]-x^4`
`=(x^4+1)^2-(x^2)^2`
`=(x^4-x^2+1).(x^4+x^2+1)`
`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`
`=[(x^2+1)^2-x^2].(x^4-x^2+1)`
`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)
11. ` x^5-x^4-x^3-x^2-x-2`
`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`
`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`
`=(x-2).(x^4+x^3+x^2+x+1)`
12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`
`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`
`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`
`=(x^2-1).(x^7-x^4-x^3+1)`
`=(x-1)(x+1)(x^3-1)(x^4-1)`
`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`
`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`
`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`
13. `(x^2-x)^2-12(x^2-x)+24`
`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`
`=(x^2-x+6)^2-12`
`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`
a) \(x-\dfrac{3}{4}=6\times\dfrac{3}{8}\)
\(x-\dfrac{3}{4}=\dfrac{9}{4}\)
=> \(x=\dfrac{9}{4}+\dfrac{3}{4}=3\)
b) \(\dfrac{7}{8}:x=3-\dfrac{1}{2}\)
\(\dfrac{7}{8}:x=\dfrac{5}{2}\)
=> \(x=\dfrac{7}{8}:\dfrac{5}{2}=\dfrac{7}{20}\)
c) \(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
=> \(x=\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{7}{12}\)
d) \(\dfrac{3}{2}\times\dfrac{4}{5}-x=\dfrac{2}{3}\)
\(\dfrac{6}{5}-x=\dfrac{2}{3}\)
=> \(x=\dfrac{6}{5}-\dfrac{2}{3}=\dfrac{8}{15}\)
e) \(x\times3\dfrac{1}{3}=3\dfrac{1}{3}:4\dfrac{1}{4}\)(?)
\(x\times\dfrac{10}{3}=\dfrac{40}{51}\)
=> \(x=\dfrac{40}{51}:\dfrac{10}{3}=\dfrac{4}{17}\)
f) \(5\dfrac{2}{3}:x=3\dfrac{2}{3}-2\)
\(\dfrac{17}{3}:x=\dfrac{5}{3}\)
=> \(x=\dfrac{17}{3}:\dfrac{5}{3}=\dfrac{17}{5}\)
a: =>x-3/4=18/8=9/4
=>x=9/4+3/4=12/4=3
b: =>7/8:x=5/2
=>x=7/8:5/2=7/8*2/5=14/40=7/20
c: x+1/2*1/3=3/4
=>x+1/6=3/4
=>x=3/4-1/6=9/12-2/12=7/12
d: =>12/10-x=2/3
=>6/5-x=2/3
=>x=6/5-2/3=18/15-10/15=8/15
e: =>x*10/3=10/3:17/4=10/3*4/17
=>x=4/17
f: =>17/3:x=13/3-5/2=26/6-15/6=11/6
=>x=17/3:11/6=17/3*6/11=34/11
8 x 1 = 8 8 x 2 = 16 8 x 3 = 24 8 x 4 = 32
1 x 8 = 8 2 x 8 = 16 3 x 8 = 24 4 x 8 = 32
8 x 5 = 40 8 x 6 = 48 8 x 7 = 56 8 x 8 = 64
5 x 8 = 40 6 x 8 = 48 7 x 8 = 56 8 x 9 = 72
ĐKXĐ:x≠0
\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2\) \(-4\left(x^2+\dfrac{1}{x^2}\right)\left(x+\dfrac{1}{x}\right)^2=\left(x+4\right)^2\)
⇔\(8\left(x+\dfrac{1}{x}\right)^2+4\left(x^2+\dfrac{1}{x^2}\right)^2-4\left(x^2+\dfrac{1}{x^2}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)= \left(x+4\right)^2\)
⇔\(8\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)
⇔\(\left(x+4\right)^2=16=4^2=\left(-4\right)^2\)
⇔\(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)
Vậy \(S=\left\{-8\right\}\)
\(8\left(\frac{x+1}{x}\right)^2=\left(x+4\right)^2\)
\(8+\frac{16}{x}+\frac{8}{x^2}=x^2+8x+16\)
\(8x^2+16x+8=x^4+8x^3+16x^2\)
\(8x^2+16x+8-x^4-8x^3-16x^2=0\)
\(-8x^2+16x+8-x^4-8x^3=0\)
\(-x^4-8x^3-8x^2+16x+8=0\)
làm nốt nhé !