Tính tổng: S= 3 - 3^2 + 3^3 - 3^4 + 3^5 - 3^6 + .... + 3^99 - 3^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 1 + ( -2) +3 +(-4) + .........+ 19 + (-20)
= -1 + ( -1) +....+(-1)
= -1. 10
= -10
2. 1 – 2 + 3 – 4 + . . . + 99 – 100
= ( -1) + (-1) +....+(-1)
= -1. 50
= -50
3. 2 – 4 + 6 – 8 + . . . + 48 – 50
= (-2) + (-2) +....+ (-2)
= -2. 12 + 26
= -24 + 26
= 2
4. – 1 + 3 – 5 + 7 - . . . . + 97 – 99
= 2 + 2 +......+2
= 2.25
= 50
5. 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
= (1+2-3-4) +......+ ( 97+98-99 -100)
= -4 . (-4).....(-4)
= -4. 25
= -100
2/ (1-2)+(3-4)+.....+(99-100)
=-1+(-1)+....+(-1) có 50 số -1
=-1x50
=-50
số số hạng là : (100-1):1+1=100 số
suy ra ta chia thành 50 nhóm
=(1-2)+(3-4)+....+(99-100)
=-1+(-1)+....+(-1) (25 số)
=-1.25
=-25
nhớ tích mh nha bạn
S=1-2+3-4+..........+99-100
ta có: (100-1):1+1= 100
=>từ 1 đến 100 có 100 số
=(1-2)+(3-4)+........+(99-100)
=(-1)+(-1)+........+(-1)
ta có: 100:2=50
=>có 50 số -1
=(-1).50
=-50
k mình nha bạn!
1) Từ 1 đến 100 có tất cả 100 số số hạng
=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)
=> A=5050
2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng
=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)
=> B=250
3) làm tương tự
4) S=\(1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+....+2^{10}\)
\(2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1\)
5) làm tương tự
A=1+2+3+...+99+100
Số số hạng của dãyA là:
(100-1):1+1=100(số hạng)
Tổng của dãy A là :
(100+1).100:2=5050
B=1+3+5+...+97+99
Số số hạng của dãy B là:
(99-1):2+1=50 (số hạng)
Tổng của dãy B là:
(99+1).50:2=250
C=2+4+6+...+98+100
Số số hạng của dãy C là:
(100-2):2+1=50(số hạng)
Tổng của dãy C là:
(100+2).50:2=2550
S=1+2+22+23+...+29
2S= 2+22+23+...+29+210
2S-S=1-210
S=1-210
M=1+3+32+33+...+39
3M=3+32+33+...+39+310
3M-M=1-310
2M=1-310
M=(1-310):2
S= 3 - 3^2 + 3^3 - 3^4 + 3^5 - 3^6 + .... + 3^99 - 3^100
3S= 3 ( 3- 3^2 + 3^3 - 3^4 + 3^5 - 3^6 + .... + 3^99 - 3^100 )
3S= 3^2 - 3^3 + 3^4 - 3^5 + 3^6 - 3^7 + .... + 3^100 - 3^101
3S+S= ( 3^2 - 3^3 + 3^4 - 3^5 + 3^6 - 3^7 + .... + 3^100 - 3^101 ) + ( 3 - 3^2 + 3^3 - 3^4 + 3^5 - 3^6 + .... + 3^99 - 3^100 )
4S= -3^101 + 3
S= \(\frac{-3^{101}+3}{4}\)