K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2020

\((3x+\frac{1}{4})-\frac{1}{3}\times(6x+\frac{9}{5})=1\)1

<=> \(3x+\frac{1}{4}-2x-\frac{3}{5}=1\)

<=>\(x-\frac{7}{20}=1\)

<=>\(20x-7=20\)

<=>\(20x=20+7\)

<=>\(20x=27\)

<=> \(x=\frac{27}{20}\)

9 tháng 5 2020

\(\left(3x+\frac{1}{4}\right)-\frac{1}{3}.\left(6x+\frac{9}{5}\right)=1\)

\(\Leftrightarrow3x+\frac{1}{4}-2x-\frac{3}{5}=1\)

\(\Leftrightarrow x=1+\frac{3}{5}-\frac{1}{4}\)

\(\Leftrightarrow x=\frac{27}{20}\)

10 tháng 7 2021

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)

9 tháng 5 2020

a,<=> 3x+1/4-2x-3/5=1

<=> x-7/20=1

<=> x= 27/20

a, \(\left(3x+\frac{1}{4}\right)-\frac{1}{3}\left(6x+\frac{9}{5}\right)=1\)

\(3x+\frac{1}{4}-\frac{6}{3}x-\frac{3}{5}=1\)

\(x-\frac{7}{20}=1\Leftrightarrow x=\frac{27}{20}\)

b,ĐKXĐ : x \(\ne\)-1/2 ; 1/2 

 \(\left(\frac{5}{2x+1}\right)-\left(\frac{2x}{1-2x}\right)=1-\left(\frac{6-4x}{4x^2-1}\right)\)

\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{6-4x}{4x^2-1}\)

\(\frac{5}{2x+1}-\frac{2x}{1-2x}=1-\frac{2\left(3-2x\right)}{\left(2x+1\right)\left(2x-1\right)}\)

\(\frac{5\left(1-2x\right)\left(2x-1\right)\left(2x+1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2x\left(2x+1\right)^2\left(2x-1\right)}{\left(1-2x\right)\left(2x+1\right)^2\left(2x-1\right)}=\frac{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}{\left(2x+1\right)^2\left(1-2x\right)\left(2x-1\right)}-\frac{2\left(3-2x\right)\left(2x+1\right)\left(1-2x\right)}{\left(2x+1\right)\left(2x-1\right)^2\left(2x-1\right)\left(1-2x\right)}\)

\(22x-5-20x^2-8x^3=18x-7-8x^3-4x^2\)

lm nốt nha,bị troll rồi ko vt đc nữa.

3 tháng 10 2017

a) Trường hợp 1. Xét 4 - 5x = 5 - 6x.

Tìm được x = 1.

a: \(x^3+8x=5x^2+4\)

=>\(x^3-5x^2+8x-4=0\)

=>\(x^3-x^2-4x^2+4x+4x-4=0\)

=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)

=>\(\left(x-1\right)\left(x-2\right)^2=0\)

=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

2: \(x^3+3x^2=x+6\)

=>\(x^3+3x^2-x-6=0\)

=>\(x^3+2x^2+x^2+2x-3x-6=0\)

=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)

=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)

=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)

3: ĐKXĐ: x>=0

\(2x+3\sqrt{x}=1\)

=>\(2x+3\sqrt{x}-1=0\)

=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)

=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)

=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)

=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)

=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)

4: \(x^4+4x^2+1=3x^3+3x\)

=>\(x^4-3x^3+4x^2-3x+1=0\)

=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)

=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)

=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)

=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

NV
16 tháng 1

a.

\(x^3+8x=5x^2+4\)

\(\Leftrightarrow x^3-5x^2+8x-4=0\)

\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

b.

\(x^3+3x^2-x-6=0\)

\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)

\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)

19 tháng 2 2022

\(a,\left(3x+1\right)^2-\left(2x-5\right)^2=0\\ \Leftrightarrow\left(3x+1+2x-5\right)\left(3x+1-2x+5\right)=0\\ \Leftrightarrow\left(5x-4\right)\left(x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-6\end{matrix}\right.\\ b,\left(x+3\right)\left(4-3x\right)=x^2+6x+9\\ \Leftrightarrow\left(x+3\right)\left(4-3x\right)-\left(x+3\right)^2=0\\ \Leftrightarrow\left(x+3\right)\left(4-3x-x-3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(1-4x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{4}\end{matrix}\right.\)

7 tháng 1 2021

a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)

=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)

=>\(17\sqrt{3x}=17\)

=>\(\sqrt{3x}=1\)

=>\(x=\dfrac{1}{3}\)

7 tháng 1 2021

b.Ta có:\(\sqrt{x^2-6x+9}=1\)

 

=>\(\sqrt{\left(x-3\right)^2}=1\)

=>\(\left|x-3\right|=1\)

Vậy có hai trường hợp:

TH1:\(x-3=1\)

=>\(x=4\)

TH2:\(x-3=-1\)

=>\(x=2\)