K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 5 2020

\(x+4m^2\ge2mx+1\Leftrightarrow\left(2m-1\right)x\le4m^2-1\)

Để miền nghiệm của BPT chứa \(+\infty\)

\(\Rightarrow2m-1< 0\Rightarrow m< \frac{1}{2}\)

Khi đó: \(\left(2m-1\right)x\le\left(2m-1\right)\left(2m+1\right)\Rightarrow x\ge2m+1\)

\(\Rightarrow2m+1=-5\Rightarrow m=-3\)

Đáp án B

19 tháng 3 2021

1.

ĐKXĐ: \(x=2\)

Xét \(x=2\), bất phương trình vô nghiệm

\(\Rightarrow\) bất phương trình đã cho vô nghiệm

\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn

Đề bài lỗi chăng.

19 tháng 3 2021

\(-x^2-2\left(m-1\right)x+2m-1>0\)

\(\Leftrightarrow x^2+2\left(m-1\right)x-2m+1< 0\)

\(f\left(x\right)=x^2+2\left(m-1\right)x-2m+1\)

Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)=0\) có hai nghiệm phân biệt thỏa mãn \(x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+2m-1>0\\f\left(1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2>0\\1+2\left(m-1\right)-2m+1\le0\\-2m+1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m\ge\dfrac{1}{2}\)

Bài 2: 

Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0

hay -2<m<2

13 tháng 6 2018

Đáp án B.

Với x ∈ 5 2 ; 4  thì phương trình tương đương với:

m - 1 log 2 2 x - 2 + m - 5 log 2 x - 2 + m - 1 = 0             (1)

Đặt log 2 ( x - 2 ) = t . Với  x ∈ 5 2 ; 4  thì t ∈ - 1 ; 1 . Phương trình (1) trở thành:

( m - 1 ) t 2 + ( m - 5 ) t + m - 1 = 0 ⇔ m ( t 2 + t + 1 ) = t 2 + 5 t + 1 ⇔ m = t 2 + 5 t + 1 t 2 + t + 1  (2)

Xét hàm số  f ( t ) = t 2 + 5 t + 1 t 2 + t + 1 = 1 + 4 t t 2 + t + 1  trên đoạn  - 1 ; 1  .

Đạo hàm f ' ( t ) = - 4 ( t 2 - 1 ) t 2 + t + 1 ≥ 0 ,   ∀ t ∈ - 1 ; 1 ;   f ' ( t ) = 0 ⇔ t = ± 1 . Khi đó hàm số f ( t )  đồng biến trên  - 1 ; 1 . Suy ra min - 1 ; 1 f ( t ) = f ( - 1 ) = - 3 ;   max - 1 ; 1 f ( t ) = f ( 1 ) = 7 3 .

Phương trình (2) có nghiệm ⇔  Đường thẳng y - m  cắt đồ thị hàm số  f ( t ) ⇔ - 3 ≤ m ≤ 7 3 . Vậy S = - 3 ; 7 3 → a = - 3 ,   b = 7 3 → a + b = - 3 + 7 3 = - 2 3 .

12 tháng 2 2019

Đáp án B

Phương pháp:

- Biến đổi phương trình về phương trình bậc hai đối với log 2 x − 2  và đặt ẩn phụ t = log 2 x − 2  với  t ∈ − 1 ; 1

- Rút m theo t và xét hàm f(t) để tìm ra điều kiện của m.

Cách giải: 

m − 1 log 1 2 2 x − 2 2 + 4 m − 5 log 1 2 1 x − 2 + 4 m − 4 = 0 x > 2

m − 1 log 2 2 x − 2 + m − 5 log 2 x − 2 + m + 1 = 0

Đặt  y = log 2 x − 2 ⇒ x ∈ 5 2 ; 4 ⇒ t ∈ − 1 ; 1

Phương trình đã cho trở thành:

m − 1 t 2 + m − 5 t + m + 1 = 0

⇔ m t 2 + t + 1 = t 2 + 5 t + 1 ⇔ m = t 2 + 5 t + 1 t 2 + t + 1 = 1 + 4 t t 2 + t + 1

vì  t 2 + t + 1 > 0 ∀ t ∈ − 1 ; 1

Xét hàm số: y = 1 + 4 t t 2 + t + 1  trên  − 1 ; 1

Có: y ' t = − 4 t 2 + 4 t 2 + t + 1 2

y ' x = 0 ⇔ − 4 t 2 + 4 t 2 + t + 1 2 = 0 ⇔ t = ± 1 ∈ − 1 ; 1

Ta có bảng biến thiên:

⇒ m ∈ − 3 ; 7 3 ⇒ a + b = − 2 3 .

Chú ý khi giải: HS thường nhầm lẫn các công thức biến đổi logarit dẫn đến kết quả sai, hoặc nhầm lẫn trong bước xét hàm f(t) để đi đến kết luận.

22 tháng 3 2017

8 tháng 8 2017

Đáp án B.

Với x ∈ 5 2 ; 4  thì phương trình tương đương với:

m - 1 log x 2 x - 2 + m - 5 log 2 x - 2 + m - 1 = 0  (1)

Đặt log 2 x - 2 = t . Với  x ∈ 5 2 ; 4  thì t ∈ - 1 ; 1 . Phương trình (1) trở thành:

m - 1 t 2 + m - 5 + m - 1 = 0 ⇔ m t 2 + t + 1 = t 2 + 5 t + 1 ⇔ m = t 2 + 5 t + 1 t 2 + t + 1  (2)

Xét hàm số f ( t ) = t 2 + 5 t + 1 t 2 + t + 1 = 1 + 4 t t 2 + t + 1  trên đoạn - 1 ; 1  .

Đạo hàm f ' ( t ) = - 4 t 2 - 1 t 2 + t + 1 2 ≥ 0 , ∀ t ∈ - 1 ; 1 ; f ' ( t ) = 0 ⇔ t = ± 1 . Khi đó hàm số [-1;1] đồng biến trên [-1;1]. Suy ra   m i n [ - 1 ; 1 ] f ( t ) = f ( - 1 ) = - 3 m a x [ - 1 ; 1 ] f ( t ) = f ( 1 ) = 7 3 .

Phương trình (2) có nghiệm ⇔  Đường thẳng y - m  cắt đồ thị hàm số

f ( t ) ⇔ - 3 ≤ m ≤ 7 3 . Vậy S = - 3 ; 7 3 → a = - 3 b , b = 7 3 → a = - 3 , b = 7 3 → a + b = - 3 + 7 3 = - 2 3 .

Trường hợp 1: m=-1

Bất phương trình sẽ là \(0x^2-2\cdot0\cdot x+4>=0\)(luôn đúng)

Trường hợp 2: m<>-1

\(\text{Δ}=\left(2m+2\right)^2-4\cdot4\cdot\left(m+1\right)\)

\(=4m^2+8m+4-16m-16\)

\(=4m^2-8m-12\)

\(=4\left(m^2-2m-3\right)\)

Để bất phương trình có nghiệm đúng với mọi x thực thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+1\right)< 0\\\left(m+1\right)>=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< m< 3\\m>=-1\end{matrix}\right.\Leftrightarrow-1< m< 3\)

Vậy: -1<=m<3

13 tháng 2 2022

TH1: m+1=0 <=> m=-1

Khi đó bpt là -2(-1+1)x+4 >= 0 <=> -4x+4 >= 0 <=> x<=1 (KTM S=R) => loại

TH2: m+1 khác 0 <=> m khác -1

Để bpt (m+1)x2 -2(m+1)x+4 ≥ 0 có nghiệm với mọi x 

<=> {a>0Δ0{m+1>0[(m+1)]24(m+1)0{a>0Δ′≤0⇔{m+1>0[−(m+1)]2−4(m+1)≤0

<=>{m>1m22m30m>1[m<1m>3m>3{m>−1m2−2m−3≥0⇔{m>−1[m<−1m>3⇔m>3

Vậy m>3 thì...