K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
5 tháng 7 2021

\(KL//MN\Rightarrow\widehat{K}+\widehat{N}=180^o\)

mà \(8\widehat{K}=\widehat{N}\)

suy ra \(\widehat{K}+8\widehat{K}=180^o\Leftrightarrow\widehat{K}=20^o\Rightarrow\widehat{N}=8.20^o=160^o\)

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:

$S_{MNQ}=S_{MNP}$ (do chiều cao bằng nhau và chung đáy)

$\Rightarrow S_{MQK}=S_{NKP}=15$ (cm2)

Kẻ đường cao $NH$ xuống $MP$, đường cao $QT$ xuông $MH$

\(\frac{S_{MNP}}{S_{MQP}}=\frac{MN}{PQ}=\frac{3}{5}\)

\(\frac{S_{MNP}}{S_{MQP}}=\frac{NH}{QT}\)

\(1=\frac{S_{NPK}}{S_{MQK}}=\frac{NH\times PK}{QT\times MK}\Rightarrow \frac{NH}{QT}=\frac{MK}{PK}\)

Từ 3 điều trên suy ra $\frac{MK}{PK}=\frac{3}{5}$

$\frac{S_{MNK}}{S_{NPK}}=\frac{MK}{PK}=\frac{3}{5}$

$S_{MNK}=\frac{3}{5}\times S_{NPK}=\frac{3}{5}\times 15=9$ (cm2)

$\frac{S_{MQK}}{S_{PQK}}=\frac{MK}{PK}=\frac{3}{5}$

$\Rightarrow S_{PQK}=\frac{5}{3}\times S_{MQK}=\frac{5}{3}\times 15=25$ (cm2)

Diện tích hình thang:

$15+15+9+25=64$ (cm2)

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Hình vẽ:

13 tháng 8 2021

undefined

19 tháng 5 2019

Xét tam giác ABD và tam giác BDC

có \(\widehat{DAB}=\widehat{CBD}\)

\(\widehat{ABD}=\widehat{BDC}\)(so le trong, AB // CD)

nên tam giác ABD đồng dạng với tam giác DBC

2

Xét tam giác ADC có

M là trung điểm của AD

N là trung điểm của AC

suy ra MN là đường trung bình của tam giác ADC

nên MN // DC (1)

Xét tam giác ABC có

K là trung điểm của BC

N là trung điểm của AC

suy ra NK là đường trung bình của tam giác ABC

nên NK //AB 

mà AB // CD 

do đó NK // CD (2)

Từ (1), (2) và theo tiên đề ơ-clít ta có

NK trùng với MN

do đó M,N,K thẳng hàng

19 tháng 5 2019

Hình bạn tự vẽ nhé ! 

Câu 1: 

Xét tam giác ABD và tam giác DBC có

Góc DAB = góc CBD 

Góc ABD = góc BDC ( so le trong AB // CD )

nên tam giác ABD đồng dạng tam giác DBC

Câu 2:

Xét tam giác ADC có: 

M là trung điểm của AD

N là trung điểm của AC

=> MN là đường trung bình của tam giác ADC => MN // DC (1)

Xét tam giác ABC có: 

K là trung điểm của BC

N là trung điểm của AC

=> NK là đường trung bình của tam giác ABC => NK // AB 

mà AB / CD => NK // CD (2)

Từ (1) và (2) theo tiên đề Ơ - clit ta có: 

NK trùng với MN => M, N, K thẳng hàng ( đpcm )