cho các số dương a,b,c thỏa mãn a+b+c=1 CMR (a+1/a)^2+(b+1/b)^2+(c+1/c)>=100/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(a+b^2+c^3=\left(a+\frac{1}{a}\right)+\left(b^2+\frac{1}{b}+\frac{1}{b}\right)+\left(c^3+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)-\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)
\(\ge2.1+3.1+4.1-6=3\)
Dấu "=" <=> \(\hept{\begin{cases}a^2=1\\b^3=1\\c^4=1\end{cases}\Rightarrow a=b=c=1}\)
Học tốt!!!!
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Áp dụng BĐT AM-GM ta có:
\(\frac{a^2}{1+b-a}+a^2\left(1+b-a\right)\ge2a^2\)
\(\frac{b^2}{1+c-b}+b^2\left(1+c-b\right)\ge2b^2\)
\(\frac{c^2}{1+a-c}+c^2\left(1+a-c\right)\ge2c^2\)
Cộng theo vế rồi rút gọn, ta được:
\(\frac{a^2}{1+b-a}+\frac{b^2}{1+c-b}+\frac{c^2}{1+a-c}+a^2b+b^2c+c^2a-a^3-b^3-c^3\ge1\)
Vậy ta cần cm BĐT \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\), luôn đúng với BĐT AM-GM 3 số
Vậy BĐT được chứng minh
Cho các số thực dương a, b, c thỏa mãn a2 + b2 + c2 = 3.
CMR: 1/a + 1/b + 1/c + 3/2 * (a+b+c) >= 15/2
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\)\(=\left(\frac{1}{a}+\frac{3a}{2}\right)+\left(\frac{1}{b}+\frac{3b}{2}\right)+\left(\frac{1}{c}+\frac{3c}{2}\right)\)
*Nháp*
Dự đoán điểm rơi tại a = b = c = 1 khi đó \(VT=\frac{15}{2}\)
Ta dự đoán BĐT phụ có dạng \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+n\)(Ta thấy các hạng tử trong điều kiện đã cho ban đầu đều có bậc là 2 nên VP của BĐT phụ cũng có bậc là 2) (*)
Do đó ta có: \(\frac{1}{a}+\frac{3a}{2}\ge ma^2+n\);\(\frac{1}{b}+\frac{3b}{2}\ge mb^2+n\);\(\frac{1}{c}+\frac{3c}{2}\ge mc^2+n\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=\frac{15}{2}\)
\(\Rightarrow m+n=\frac{5}{2}\Rightarrow n=\frac{5}{2}-m\)
Thay\(n=\frac{5}{2}-m\)vào (*), ta được: \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+\frac{5}{2}-m\)
\(\Leftrightarrow\frac{1}{x}+\frac{3x}{2}-\frac{5}{2}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{2x\left(x+1\right)}\ge m\left(x-1\right)\)
\(\Leftrightarrow m\le\frac{3x-2}{2x\left(x+1\right)}\)(**)
Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{4}\Rightarrow n=\frac{9}{4}\)
Như vậy, ta được BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)
GIẢI:
Ta có a,b,c là các số thực dương và \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a,b,c\le\sqrt{3}\)
Ta chứng minh BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)(với \(0< x\le\sqrt{3}\))
\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{4x}\ge0\)(Đúng với mọi \(0< x\le\sqrt{3}\))
Áp dụng ta được: \(\frac{1}{a}+\frac{3a}{2}\ge\frac{a^2+9}{4}\);\(\frac{1}{b}+\frac{3b}{2}\ge\frac{b^2+9}{4}\);\(\frac{1}{c}+\frac{3c}{2}\ge\frac{c^2+9}{4}\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{\left(a^2+b^2+c^2\right)+9.3}{4}=\frac{15}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
BĐT cần chứng minh tương đương với :
\(\left(a^2b+b^2c+c^2a\right)\left(2+\frac{1}{a^2b^2c^2}\right)\ge9\)
\(\Leftrightarrow2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge9\)
Áp dụng BĐT Cô-si cho 3 số dương ,ta có :
\(a^2b+a^2b+\frac{1}{ab^2}\ge3\sqrt[3]{a^2b.a^2b.\frac{1}{ab^2}}=3a\)
tương tự : \(b^2c+bc^2+\frac{1}{bc^2}\ge3b\), \(\left(c^2a+ca^2+\frac{1}{ca^2}\right)\ge3c\)
Cộng 3 BĐT trên theo vế, ta được :
\(2\left(a^2b+b^2c+c^2a\right)+\frac{1}{ab^2}+\frac{1}{bc^2}+\frac{1}{ca^2}\ge3\left(a+b+c\right)=9\)
Dấu "=" xảy ra khi a = b = c = 1