a, ( x -4)(x-5) >0
b , 4x + 3/11 > 14/11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10.
\((x^2-2x-3)(x^2+10x+21)=25\)
\(\Leftrightarrow (x-3)(x+1)(x+3)(x+7)=25\)
\(\Leftrightarrow [(x-3)(x+7)][(x+1)(x+3)]=25\)
\(\Leftrightarrow (x^2+4x-21)(x^2+4x+3)=25\)
Đặt \(x^2+4x-21=a\) thì pt trở thành:
\(a(a+24)=25\)
\(\Leftrightarrow a^2+24a-25=0\)
\(\Leftrightarrow (a-1)(a+25)=0\Rightarrow \left[\begin{matrix} a=1\\ a=-25\end{matrix}\right.\)
Nếu \(a=x^2+4x-21=1\Leftrightarrow x^2+4x-22=0\)
\(\Leftrightarrow (x+2)^2=26\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\) (t/m)
Nếu \(a=x^2+4x-21=-25\Leftrightarrow x^2+4x+4=0\Leftrightarrow (x+2)^2=0\Rightarrow x=-2\) (t/m)
Vậy \(x\in \left\{-2\pm \sqrt{26}; -2\right\}\)
11.
\(x^4-4x^3+10x^2+37x-14=0\)
\(\Leftrightarrow (x^4-4x^3+4x^2)+6x^2+37x-14=0\)
\(\Leftrightarrow x^4+2x^3-(6x^3+12x^2)+(22x^2+44x)-(7x+14)=0\)
\(\Leftrightarrow x^3(x+2)-6x^2(x+2)+22x(x+2)-7(x+2)=0\)
\((x+2)(x^3-6x^2+22x-7)=0\)
\(\Rightarrow \left[\begin{matrix} x+2=0\\ x^3-6x^2+22x-7=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x^3-6x^2+22x-7=0(*)\end{matrix}\right.\)
Đối với pt $(*)$ (ta sử dụng pp Cardano)
\(\Leftrightarrow (x^3-6x^2+12x-8)+10x+1=0\)
\(\Leftrightarrow (x-2)^3+10(x-2)+21=0\)
Đặt \(x-2=a-\frac{10}{3a}\) thì PT trở thành:
\((a-\frac{10}{3a})^3+10(a-\frac{10}{3a})+21=0\)
\(\Leftrightarrow a^3-\frac{1000}{27a^3}+21=0\)
\(\Leftrightarrow 27a^6+576a^3-1000=0\). Đặt \(a^3=t\) thì:
\(27t^2+576t-1000=0\)
\(\Rightarrow 27(t^2+\frac{64}{3}t+\frac{32^2}{3^2})=4072\)
\(\Leftrightarrow 27(t+\frac{32}{3})^2=4072\Rightarrow t=\pm\sqrt{\frac{4072}{27}}-\frac{32}{3}\)
\(\Rightarrow a=\sqrt[3]{\pm \sqrt{\frac{4072}{27}}-\frac{32}{3}}\)
\(x=2+a-\frac{10}{3a}\) với giá trị $a$ như trên.
P/s: Bài này mình thấy có vẻ không phù hợp với lớp 8.
1.a)x+7=-5-14
x+7=-19
x=-19-7
x=-26
Vậy x=-26
b)3x-4=(-2)3-11
3x-8=-11
3x=-11+8
3x=-3
x=-3:3
X=-1
Vậy x=-1
c)11+(4x-11)=-9-(-15)
11+(4x-11)=-9+15
11+(4x-11)=6
4x-11=6-11
4x=6
x=\(\dfrac{6}{4}\)
Vậy x=\(\dfrac{6}{4}\)
d)\(\left|2x-1\right|=5\)
⇒2x-1=\(\pm5\)
+Nếu 2x-1=5
2x=6
x=6:2
x=3
Vậy x=3
+Nếu 2x-1=-5
2x=-5+1
2x=-4
x=-4:2
x=-2
Vậy xϵ{3;-2}
e)\(\left|x-7\right|+3=25\)
\(\left|x-7\right|=22\)
⇒x-7=\(\pm22\)
+Nếu x-7=22
x=22+7=29
+Nếu x-7=-22
x=-22+7
x=-15
Vậy xϵ{29;-15}
5/ (x2 – 4) + (x – 2)(4 – 2x) = 0
⇔(x-2)(x+2)+(x – 2)(4 – 2x)=0
⇔(x-2)(x+2+4-2x)=0
⇔(x-2)(6-x)=0
⇔\(\left[{}\begin{matrix}x-2=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
6/ x(2x – 7) – 4x + 14 = 0
⇔2x2-11x+14=0
⇔(x-\(\frac{7}{2}\))(x-2)=0
⇔\(\left[{}\begin{matrix}x-\frac{7}{2}=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)
7/ x2 – x – (3x–3)= 0
⇔x2-4x+3=0
⇔(x-3)(x-1)=0
⇔\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
8/ (x2 – 2x + 1) – 4 = 0
⇔(x-1)2-4=0
⇔(x-1-4)(x-1+4)=0
⇔(x-5)(x+3)=0
⇔\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
9/ 4x2 + 4x + 1 = x2
⇔3x2+4x+1=0
⇔(3x+1)(x+1)=0
⇔\(\left[{}\begin{matrix}3x+1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=-1\end{matrix}\right.\)
10/ x2 – x = - 2x + 2
⇔3x2-x-2=0 (chuyển vế)
⇔(3x+2)(x-1)=0
⇔\(\left[{}\begin{matrix}3x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=1\end{matrix}\right.\)
11/ x2 – 5x + 6 = 0
⇔x2-3x-2x+6=0
⇔x(x-3)-2(x-3)=0
⇔(x-3)(x-2)=0
⇔\(\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
Mình làm bài khá tắt nên có gì không hiểu bạn cứ hỏi mình nha!
a,x.(3\4+2\5)=1
x.20\23=1
x=1:20\23
x=20\23
b,x-9\11=0 hoặc x-25\31=0
x=9\11 x=25\31
c,x-3\7.9\14=7\3
x-2\3=7\3
x=7\3+2\3
x=9\3
x=3
a,\(\frac{14}{3}\)> \(\frac{42}{11}\)
b, 0 < \(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{6}\)
c, 0 < 1 < \(\frac{1}{4}\)+ \(\frac{5}{6}\)+ \(\frac{11}{12}\)
Bài 4:
a. Ta thấy:
$|x|\geq 0; |y-1|\geq 0$ với mọi $x,y$
$\Rightarrow$ để tổng $|x|+|y-1|=0$ thì:
$|x|=|y-1|=0\Rightarrow x=0; y=1$.
b. Ta thấy:
$|x-1|\geq 0; |2y-4|\geq 0$
$\Rightarrow |x-1|+|2y-4|\geq 0$ với mọi $x,y$.
Do đó không tồn tại $x,y$ để $|x-1|+|2y-4|<0$