Tính nhanh
1/6+1/12+1/24+/48+1/96
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
\(=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}\)
\(=\frac{5}{8}+\frac{1}{32}\)
\(=\frac{21}{32}\)
\(=2\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{192}\right)\)
\(=2\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+...+\frac{1}{96}-\frac{1}{192}\right)\)
\(=2\left(1-\frac{1}{192}\right)\)
\(=2\times\frac{191}{192}\)
\(=\frac{191}{96}\)
A= 1/3+1/6+1/12+1/24+1/48+1/96
= (1/3+1/6)+(1/12+1/24)+(1/48+1/96)
= (2/6+1/6)+(2/24+1/24)+(2/96+1/96)
= 1/2+1/8+1/32
= 16/32+4/32+1/32
= 21/32
Vậy A=21/32
Giải:
A=1/3+1/6+1/12+1/24+1/48+1/96
A=1/3+(1/2.3+1/3.4)+(1/4.6+1/6.8)+1/96
A=1/3+(1/2-1/3+1/3-1/4)+[1/2.(2/4.6+2/6.8)]+1/96
A=1/3+(1/2-1/4)+[1/2.(1/4-1/6+1/6-1/8)]+1/96
A=1/3+1/4+[1/2.(1/4-1/8)]+1/96
A=1/3+1/4+[1/2.1/8]+1/96
A=1/3+1/4+1/16+1/96
A=7/12+7/96
A=21/32
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
\(=\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{12}+\frac{1}{24}\right)+\left(\frac{1}{48}+\frac{1}{96}\right)\)
\(=\frac{1}{2}+\frac{1}{8}+\frac{1}{32}\)
\(=\frac{21}{32}\)
Giải
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\)\(\frac{1}{96}\)
\(=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}\)\(+\frac{1}{12}-\frac{1}{24}+\frac{1}{24}-\frac{1}{48}\)\(+\frac{1}{48}-\frac{1}{96}\)
\(=\frac{1}{3}-\frac{1}{96}\)
\(=\frac{31}{96}\)
1/6 + 1/12 + 1/24 + 1/48 + 1/96
= 1/3 - 1/6 + 1/6 - 1/12 + 1/12 - 1/24 + 1/24 - 1/48 + 1/48 - 1/96
= 1/3 - 1/96
= 31/96