K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔABC vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(1\right)\)

Xét ΔMAB vuông tại A có AC là đường cao

nên \(MC\cdot BC=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)

11 tháng 12 2021

a: Xét (O) có 

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: OC là tia phân giác của góc MOA(1)

Xét (O) có 

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB

hay OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra ΔCOD vuông tại O

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4

25 tháng 12 2018

a, Tam giá ABC nội tiếp đường tròn; BC đường kính của đường tròn=> tam giác ABC vuông tại A

Xét tam giác ABC có góc BAC= 90 độ

\(CA^2=CB^2-AB^2\)( PI TA GO)

\(CA^2=4R^2-R^2\)

\(CA=\sqrt{3}R\)

b, ta có AE=EB (t/c 2 tiếp tuyến cắt nhau)(1)

AF=CF (t/c 2 tiếp tuyến cắt nhau)(2)

ta có:

EF=EA+AE

(1)(2)=> EF= BE+CF

C, ta có góc FOC=FOA(3)

góc AOE=BOE(4)

cả hai đều là tính chất hai tiếp tuyến cắt nhau

ta có FOC+FOA+AOE+BOE= 180 độ

(3)(4)=> 2(FOA+AOE)=180 độ

=> FOA+AOE= 90 độ 

=> OE vuông góc với OF

theo (1) và (2) câu a ta có BE.CF=FA.AE

xét tam giác OFE vuông tại O

FA.AE=OA^2=R^2(5)

ta có \(\frac{CB^2}{4}=\frac{4R^2}{4}=R^2\)(6)

(5)(6)=> BE.CF=\(\frac{BC^2}{4}\)

mình chưa làm được câu cuối

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0

a: Xét (O) có

OH là một phần đường kính

AB là dây

OH⊥AB tại H

Do đó: H là trung điểm của AB

Xét ΔMAB có

MH là đường trung tuyến

MH là đường cao

Do đó:ΔMAB cân tại M

Xét ΔOAM và ΔOBM có

OA=OB

AM=BM

OM chung

Do đó:ΔOAM=ΔOBM

Suy ra: \(\widehat{OAM}=\widehat{OBM}=90^0\)

=>ΔOMB vuông tại B

=>MB là tiếp tuyến

b: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó:ΔABC vuông tại A