3 phút = 1/M giờ
Tìm giá trị của M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\)( ĐKXĐ : \(x\ne-8;x\ne-3\))
\(=\frac{\left(-m+1\right)\left(m+3\right)}{\left(m+8\right)\left(m+3\right)}+\frac{\left(m-1\right)\left(m+8\right)}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{-m^2-2m+3}{\left(m+8\right)\left(m+3\right)}+\frac{m^2+7m-8}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{-m^2-2m+3+m^2+7m-8}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{5m-5}{\left(m+8\right)\left(m+3\right)}\)
Để biểu thức dương ( tức > 0 ) ta xét hai trường hợp sau :
I) \(\hept{\begin{cases}5m-5>0\\\left(m+8\right)\left(m+3\right)>0\end{cases}}\)
+) 5m - 5 > 0 => 5m > 5 => m > 1 (1)
+) ( m + 8 )( m + 3 ) > 0
1. \(\hept{\begin{cases}m+8>0\\m+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-8\\m>-3\end{cases}}\Leftrightarrow m>-3\)(2)
2. \(\hept{\begin{cases}m+8< 0\\m+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -8\\m< -3\end{cases}}\Leftrightarrow m< -8\)(3)
Từ (1) , (2) và (3) => m > 1
II) \(\hept{\begin{cases}5m-5< 0\\\left(m+8\right)\left(m+3\right)< 0\end{cases}}\)
+) 5m - 5 < 0 => 5m < 5 => m < 1 (4)
+) ( m + 8 )( m + 3 ) < 0
1. \(\hept{\begin{cases}m+8< 0\\m+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -8\\m>-3\end{cases}}\)( loại )
2. \(\hept{\begin{cases}m+8>0\\m+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-8\\m< -3\end{cases}}\Leftrightarrow-8< m< -3\)(5)
Từ (4) và (5) => -8 < m < -3
Từ I) và 2)
=> Với m > 1 hoặc -8 < m < -3 thì biểu thức có giá trị dương
\(\frac{\left(m+1\right)\left(m-5\right)}{2}\)có giá trị âm
=> ( m + 1 )( m - 5 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}m+1< 0\\m-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>5\end{cases}}\)( loại )
2. \(\hept{\begin{cases}m+1>0\\m-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 5\end{cases}}\Leftrightarrow-1< m< 5\)
Vậy với -1 < m < 5 thì biểu thức có giá trị âm
Bài làm:
a) Ta có: \(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\) \(\left(m\ne\left\{-8;-3\right\}\right)\)
\(=\frac{\left(1-m\right)\left(m+3\right)+\left(m-1\right)\left(m+8\right)}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{\left(m-1\right)\left(m+8-m-3\right)}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{5\left(m-1\right)}{\left(m+8\right)\left(m+3\right)}\)
Để BT có giá trị dương thì ta xét 2 TH sau:
+ Nếu: \(\hept{\begin{cases}5\left(m-1\right)>0\\\left(m+8\right)\left(m+3\right)>0\end{cases}}\Rightarrow m>1\)
+ Nếu: \(\hept{\begin{cases}5\left(m-1\right)< 0\\\left(m+8\right)\left(m+3\right)< 0\end{cases}}\Rightarrow-8< m< -3\)
Bài 2:
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
a) Với m = 0, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 0) = 12 : 3 = 4
Với m = 1, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 1 ) = 12 : 2 = 6
Với m = 2, giá trị biểu thức 12 : (3 – m) là:
12 : (3 – 2) = 12 : 1 = 12
b) Vì 4 < 6 < 12 nên trong ba giá trị tìm được ở câu a, với m = 2 thì biểu thức 12 : (3 – m) có giá trị lớn nhất.
ta có: \(y=\frac{m+3}{m+2}=\frac{m+2+1}{m+2}=1+\frac{1}{m+2}\)
Để y là số dương
=> 1/m+2 là số dương
=> m +2 là số dương
\(\Rightarrow m+2>0\)
=> m > - 2
( số dương: VD: 1/2;2/3;...)