K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(D\left(x\right)=x^2-7x+6\)

\(\Delta=b^2-4ac=\left(-7\right)^2-4.1.6=49-24=25\)

Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{7-\sqrt{25}}{2.1}=\frac{7-5}{2}=\frac{2}{2}=1\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{7+\sqrt{25}}{2a}=\frac{7+5}{2.1}=\frac{12}{2}=6\)

Vậy đa thức trên có 2 nghiệm lak : {1;6}

Cách khác : 

\(D\left(x\right)=x^2-7x+6=0\)

\(D\left(x\right)=x^2-x-6x+6=0\)

\(D\left(x\right)=\left(x^2-x\right)+\left(-6x+6\right)=0\)

\(D\left(x\right)=x\left(x-1\right)-6\left(x-1\right)=0\)

\(D\left(x\right)=\left(x-6\right)\left(x-1\right)=0\)

\(x-6=0\)hoặc \(x-1=0\)

\(x=6\)                        \(x=1\)

Thật ra cách kia vẫn tiện hơn 1 tí nhưng chắc bn chưa hc nên thôi , mk giải 2 cách cho chắc KQ 

12 tháng 8 2021

Phần nào bạn ko nhìn thấy thì bảo mk nhé

undefinedundefined

12 tháng 8 2021

Ko có phần d nhé

phần e  thêm "=0" vào cuối nhé

10 tháng 6 2020

\(f\left(x\right)=x2-7x+6\)

ta có f(x)=0

hay\(x2-7x+6=0\)

\(\Leftrightarrow x2-7x=-6\)

\(\Leftrightarrow x\left(-5\right)=-6\)

\(\Leftrightarrow x=\frac{6}{5}\)

vậy nghiệm của đa thức f(x) là 6/5

10 tháng 6 2020

\(f\left(x\right)=x^2-7x+6\)

\(f\left(x\right)=0\Leftrightarrow x^2-7x+6=0\)

                   \(\Leftrightarrow x^2-x-6x+6=0\)

                   \(\Leftrightarrow x.\left(x-1\right)-6.\left(x-1\right)=0\)

                   \(\Leftrightarrow\left(x-1\right).\left(x-6\right)=0\)

                   \(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}z=1\\x=6\end{cases}}\)

Vậy phương trình có 2 nghiệm \(x=\left\{1,6\right\}\)

11 tháng 4 2023

Phân tích đa thức thành nhân tử thôi bạn :

Ta có :

\(h\left(x\right)=x^2+5x+6\)

\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)

\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)

\(\Rightarrow N_oh\left(x\right)=-2;-3\)

\(g\left(x\right)=2x^2+7x-9\)

\(g\left(x\right)=2x^2+9x-2x-9\)

\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)

 

\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)

\(\Rightarrow N_og\left(x\right)=1;-4,5\)

11 tháng 4 2023

ko biet

 

20 tháng 6 2018

Chọn B

Vì f(1) = 0, f(6) = 0 nên nghiệm của đa thức là 1 và 6.

Đặt \(x^2-7x+8=0\)

\(\Delta=\left(-7\right)^2-4\cdot1\cdot8=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{17}}{2}\\x_2=\dfrac{7+\sqrt{17}}{2}\end{matrix}\right.\)

12 tháng 5 2022

Ta có \(x^2-7x+8=0\Leftrightarrow x^2-\dfrac{2.7}{2}x+8=0\)

\(\Leftrightarrow x^2-7x+\dfrac{49}{4}-\dfrac{49}{4}+8=0\Leftrightarrow\left(x-\dfrac{7}{2}\right)^2-\dfrac{17}{4}=0\)

\(\left[{}\begin{matrix}x-\dfrac{7}{2}=\dfrac{\sqrt{17}}{2}\\x-\dfrac{7}{2}=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{17}+7}{2}\\x=\dfrac{-\sqrt{17}+7}{2}\end{matrix}\right.\)

Đặt \(x^2-7x+8=0\)

\(\Delta=\left(-7\right)^2-4\cdot1\cdot8=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{17}}{2}\\x_2=\dfrac{7+\sqrt{17}}{2}\end{matrix}\right.\)

24 tháng 5 2021

a) A(x) = 6x3-x(x+2)+4(x+3)

            = 6x3-x2+2x+12

B(x) = -x(x+1)-(4-3x)+x2(x-2)

        = -(x2)-x-4+3x+x3-2x2

        = x3-3x2+2x-4

b) C(x) = 6x3-x2+2x+12+x3-3x2+2x-4-7x3+4x2=0

            ⇒ 4x+8=0

            ⇒ 4x = -8

            ⇒ x = -2

Vậy nghiệm của đa thức C(x) là 2

Đặt \(-16x^2+7x+18=0\)

\(\text{Δ}=7^2-4\cdot\left(-16\right)\cdot18=1201>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-7-\sqrt{1201}}{-32}=\dfrac{7+\sqrt{1201}}{32}\\x_2=\dfrac{7-\sqrt{1201}}{32}\end{matrix}\right.\)