Cho a,b,c,d khác 0 và b2=ac,c2=bd. Chứng minh : \(\frac{a^3 +b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm :
Ta có : \(b^2=ca\Rightarrow\frac{a}{b}=\frac{b}{c}\), \(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) ( Tính chất dãy tỉ số bằng nhau ) (1)
Lại có : \(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
( Do \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) ) (2)
Từ (1) và (2) \(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\) ( đpcm )
Chúc bạn học tốt !!
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c};c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;b=ck;c=dk\\ \Rightarrow a=bk=ck^2=dk^3\\ \Rightarrow\dfrac{a}{d}=k^3\\ \text{Mà }\dfrac{a}{b}=k\Rightarrow\dfrac{a^3}{b^3}=k^3\\ \Rightarrow\dfrac{a}{d}=\dfrac{a^3}{b^3}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
Ta có:
\(\begin{cases}b^2=ac\\c^2=bd\end{cases}\)\(\Rightarrow\begin{cases}\frac{b}{c}=\frac{a}{b}\\\frac{c}{d}=\frac{b}{c}\end{cases}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
Câu hỏi của Lê Thị Trà MI - Toán lớp 7 - Học toán với OnlineMath Bạn xem bài làm tương tự ở link này nhé!
ta có:
b^2=ac =>a/b=b/c (1)
c^2=bd =>b/c=c/d (2)
(1)(2)=>a/b=b/c=c/d
=>a^3/b^3=b^3/c^3=c^3/d^3=abc/bcd
=>(a^3+b^3+c^30)/(b^3+c^3+d^3)=a/d
Vay.......
Nhớ tick mk nha
ta có:
b^2=ac =>a/b=b/c (1)
c^2=bd =>b/c=c/d (2)
(1)(2)=>a/b=b/c=c/d
=>a^3/b^3=b^3/c^3=c^3/d^3=abc/bcd
=>(a^3+b^3+c^3)/(b^3+c^3+d^3)=a/d
Vay dpcm