Tìm hai số nguyên a và b biết rằng a < b và a.b=24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a.b = 24 => a,b \(\in\)Ư(24)
Ư(24) ={1;2;3;4;6;8;12;24}
Vì a<b nên ta có:
a | 1 | 2 | 3 | 4 |
b | 24 | 12 | 8 | 6 |
Ta có : a và b thuộc N , a < b
24 = 23 . 3
a | 2 | 3 | 4 |
b | 12 | 8 | 6 |
Vậy ta được a có 3 số , b có 3 số
- Chứng minh P chia hết cho 8
Do ƯCLN(a;b) = 1 và a + b là số chẵn nên a và b cùng lẻ
Giả sử a = 2.m + 1; b = 2.n + 1 (m;n ϵ N)
Ta có: P = a.b.(a - b).(a + b)
= (2.m + 1).(2.n + 1).[(2.m + 1) - (2.n + 1)].[(2.m + 1) + (2.n + 1)]
= (2.m + 1).(2.n + 1).(2.m - 2.n).(2.m + 2.n + 2)
= (2.m + 1).(2.n + 1).2.(m - n).2.(m + n + 1)
= (2.m + 1).(2.n + 1).4.(m - n).(m + n + 1)
+ Nếu m - n chẵn thì P chia hết cho 2.4 = 8
+ Nếu m - n lẻ => m + n lẻ (vì m - n và m + n luôn cùng tính chẵn lẻ)
=> m + n + 1 chẵn => P chia hết cho 2.4 = 8
Như vậy, P luôn chia hết cho 8 (1)
- Chứng minh P chia hết cho 3
Vì ƯCLN(a;b)=1 nên a và b không cùng đồng thời là bội của 3
+ Nếu 1 trong 2 số a; b chia hết cho 3 dễ dàng suy ra P chia hết cho 3
+ Nếu a và b cùng dư khi chia cho 3 => a - b chia hết cho 3
=> P chia hết cho 3
+ Nếu a và b khác dư khi chia cho 3 (trừ trường hợp chia 3 dư 0)
Như vậy, trong 2 số a; b có 1 số chia 3 dư 1; 1 số chia 3 dư 2
=> a + b chia hết cho 3 => P chia hết cho 3
Do đó, P luôn chia hết cho 3 (2)
Từ (1) và (2) mà (3;8)=1 => P chia hết cho 24 (đpcm)
Câu 1:Vì a.b<0 suy ra a.b là số nguyên âm = số âm nhân số dương
Mà a<b suy ra là số nguyên âm và b là số nguyên dương
Vậy a là số nguyên âm,b là số nguyên dương và a,b khác dấu{a,b trái dấu}
Câu 2
A, a,b là số nguyên dương suy ra b là số nguyên dương
B, a.b là số nguyên âm
Suy ra a,b là một số nguyên âm và một số nguyên dương hoặc a,b là một số nguyên dương hoặc một số nguyên âm
Vậy b là số nguyên âm nếu a dương còn b là số nguyên dương nếu a âm
C,Suy ra b là số nguyên âm hoặc là số nguyên duong
Tham khảo câu 1
Câu hỏi của Cặp đôi ngọt ngào - Toán lớp 6 - Học toán với OnlineMath