K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2018

Có. Vì đoán.

17 tháng 10 2018

ngàn LIKE cho câu trả lời chất nhất năm

15 tháng 11 2021

ai đóa giúp mik ik :<

15 tháng 11 2021

a: Ta có: ΔABC=ΔDEF

nên AB=DE(1)

Ta có: ΔDEF=ΔMNP

nên DE=MN(2)

Từ (1) và (2) suy ra AB=MN

20 tháng 8 2023

Để hai tam giác trên bằng nhau theo trường hợp c.c.c thì các cặp cạnh tương ứng phải bằng nhau. Vì đã có hai cặp cạnh tương ứng là MN và DE, PM và DF nên cần thêm điều kiện NP = EF để hai tam giác trên bằng nhau theo trường hợp c.c.c

21 tháng 3 2021

Ta có : Vì tam giác DEF đồng dạng với tam giác MNP theo tỉ số k=\(\dfrac{1}{2}\)

=> \(\dfrac{S_{DEF}}{S_{MNP}}=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

=> \(S_{MNP}=\dfrac{S_{DEF}}{\dfrac{1}{4}}=\dfrac{6}{\dfrac{1}{4}}=24\left(cm^2\right)\)

Ta có: ΔDEF\(\sim\)ΔMNP theo tỉ số \(k=\dfrac{1}{2}\)(gt)

nên \(\dfrac{S_{DEF}}{S_{MNP}}=k^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{6}{S_{MNP}}=\dfrac{1}{4}\)

hay \(S_{MNP}=24\left(cm^2\right)\)

27 tháng 7 2016

Vì tam giác MNP = tam giác DEF (gt)

\(\Rightarrow\) MP = DF (2 cạnh tương ứng)

mà DF = 4m (gt)

\(\Rightarrow\) MP = 4m

\(\Rightarrow\) Chu vi của tam giác MNP là:

                 \(3+5+4=12\) (m)

                                 Đáp số: 12m

27 tháng 7 2016

M N P 3 5 D E F 4

Vì tam giác MNP=DEF 

nên: DF=MP=4cm

Chu vi tam giác MNP là:

3+4+5=12cm

Đáp số: 12 cm

( hình vẽ mk vẽ ko được bằng nhau nên bạn vẽ lại nha vui ^...^ hihi ^_^)

27 tháng 7 2016

Do \(\Delta MNP=\Delta DEF\left(gt\right)\)

\(\Rightarrow MP=DF=4m\)

Chu vi tam giác MNP là:

\(MN+NP+MP=3+5+4=12m\)

ΔDEF đồng dạng với ΔMNP

=>\(\dfrac{DE}{MN}=\dfrac{EF}{NP}=\dfrac{DF}{MP}\)

=>\(\dfrac{MN}{DE}=\dfrac{NP}{EF}=\dfrac{MP}{DF}\)

=>\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}\)

Chu vi tam giác MNP bằng 38cm nên MN+NP+MP=38

Áp dụng tính chất của dãy tỉ số bằng nhau,  ta được:

\(\dfrac{MN}{4}=\dfrac{NP}{7}=\dfrac{MP}{8}=\dfrac{MN+NP+MP}{4+7+8}=\dfrac{38}{19}=2\)

=>\(MN=4\cdot2=8\left(cm\right);NP=7\cdot2=14\left(cm\right);MP=8\cdot2=16\left(cm\right)\)

1: AB=20cm

=>AB=2dm

=>\(\dfrac{AB}{CD}=\dfrac{2}{4}=\dfrac{1}{2}\)

2: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có

\(\widehat{N}\) chung

Do đó: ΔHNM đồng dạng với ΔMNP

Xét ΔHPM vuông tại H và ΔMPN vuông tại M có

\(\widehat{P}\) chung

Do đó: ΔHPM đồng dạng với ΔMPN

Xét ΔHMN vuông tại H và ΔHPM vuông tại H có

\(\widehat{HMN}=\widehat{P}\left(=90^0-\widehat{N}\right)\)

Do đó: ΔHMN~ΔHPM

Câu 3:

ΔDEF~ΔMNP

=>\(\widehat{E}=\widehat{N}\) và \(\dfrac{DE}{MN}=k\)

Xét ΔDHE vuông tại H và ΔMIN vuông tại I có

\(\widehat{E}=\widehat{N}\)

Do đó: ΔDHE đồng dạng với ΔMIN

=>\(\dfrac{DH}{MI}=\dfrac{DE}{MN}=k\)