cho pt (m+1)2- 2(m+2)+m+1=0 . Tìm m để
+) pt có nghiệm
+)pt có 2 nghiệm phân biệt
+)pt có nghiệm kép
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta=4\left(m-3\right)^2-4.\left(m^2-1\right)\)
a. Để phương trình vô nghiệm thì \(\Delta< 0\Leftrightarrow\left(m-3\right)^2< m^2-1\Leftrightarrow m^2-6m+9< m^2-1\Leftrightarrow6m>10\Leftrightarrow m>\dfrac{10}{6}=\dfrac{5}{3}\)
b. Để phương trình có nghiệm thì:
\(\Delta\ge0\Leftrightarrow\left(m-3\right)^2\ge m^2-1\Leftrightarrow m^2-6m+9\ge m^2-1\Leftrightarrow6m\le10\Leftrightarrow m\le\dfrac{10}{6}=\dfrac{5}{3}\)
c. Để phương trình có nghiệm kép thì:
\(\Delta=0\Leftrightarrow\left(m-3\right)^2=m^2-1\Leftrightarrow m^2-6m+9=m^2-1\Leftrightarrow6m=10\Leftrightarrow m=\dfrac{10}{6}=\dfrac{5}{3}\)
Nghiệm kép của phương trình là: \(\dfrac{-b}{2a}=\dfrac{2\left(m-3\right)}{2.1}=\dfrac{2\left(\dfrac{5}{3}-3\right)}{2}=-\dfrac{4}{3}\)
d. Để phương trình có nghiệm phân biệt thì:
\(\Delta>0\Leftrightarrow\left(m-3\right)^2>m^2-1\Leftrightarrow m^2-6m+9>m^2-1\Leftrightarrow6m< 10\Leftrightarrow m< \dfrac{10}{6}=\dfrac{5}{3}\)
a, Để pt vô nghiệm
\(\Delta'=\left(m-3\right)^2-\left(m^2-1\right)=-6m+9+1=-6m+10< 0\Leftrightarrow m>\dfrac{5}{3}\)
b, Để pt có nghiệm
\(\Delta'=-6m+10\ge0\Leftrightarrow m\le\dfrac{5}{3}\)
c, Để pt có nghiệm kép
\(\Delta'=-6m+10=0\Leftrightarrow m=\dfrac{5}{3}\)
\(x_1=x_2=\dfrac{2\left(m-3\right)}{2}=m-3\)
d, Để pt có 2 nghiệm pb
\(\Delta=-6m+10>0\Leftrightarrow m< \dfrac{5}{3}\)
a) Thay \(m=-5\) vào PT ta được:
\(x^2-\left(-5\right)x+2.\left(-5\right)-3=0\)
\(\Rightarrow x^2+5x-10-3=0\)
\(\Rightarrow x^2+5x-13=0\)
\(\Delta=5^2-4.1.\left(-13\right)=25+52=77>0\)
PT có 2 nghiệm phân biệt:
\(x_1=-\frac{5+\sqrt{77}}{2}\)
\(x_2=-\frac{5-\sqrt{77}}{2}\)
Vậy với m = -5 thì PT có nghiệm là \(S=\left\{-\frac{5+\sqrt{77}}{2};-\frac{5-\sqrt{77}}{2}\right\}\)
b) PT có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow\left(-m\right)^2-4.1.\left(2m-3\right)=0\)
\(\Leftrightarrow m^2-8m+12=0\Leftrightarrow\left(m-2\right)\left(m-6\right)=0\)
\(\Leftrightarrow\int^{m-2=0}_{m-6=0}\Leftrightarrow\int^{m=2}_{m=6}\)
Vậy với m = 2 và m = 6 thì PT có nghiệm kép.
c) PT có 2 nghiệm trái dấu \(\Leftrightarrow\int^{\Delta>0}_{2m-3<0}\Leftrightarrow\int^{m>6}_{m<\frac{3}{2}}\)(vô lí)
Vậy không có giá trị nào của m thỏa mãn PT có 2 nghiệm trái dấu.
d) Ta có: \(S=x_1+x_2=-\frac{b}{a}=-\frac{\left(-m\right)}{1}=m\)
\(\Rightarrow m=S^{\left(1d\right)}\)
\(P=x_1x_2=\frac{c}{a}=\frac{2m-3}{1}=2m-3\)
\(\Rightarrow2m-3=P\Rightarrow2m=P+3\Rightarrow m=\frac{P+3}{2}^{\left(2d\right)}\)
Từ \(\left(1d\right)\&\left(2d\right)\)
\(\Rightarrow S=\frac{P+3}{2}\Rightarrow2S=P+3\)
\(\Rightarrow P+3-2S=0\)
\(\Rightarrow x_1x_2+3-2\left(x_1+x_2\right)=0\)
\(\Rightarrow x_1x_2-2x_1-2x_2+3=0\)
Đây là hệ thức giữa 2 nghiệm không phụ thuộc vào m.
e) PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m>6\)
1.
xét delta có
25 -4(-m-3)
= 25 + 4m + 12
= 4m + 37
để phương trình có nghiệm kép thì delta = 0
=> 4m + 37 = 0 => m = \(\dfrac{-37}{4}\)
2.
a) xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có nghiệm kép thì delta = 0
=> -4m + 37 = 0
=> m = \(\dfrac{37}{4}\)
b)
xét delta
25 - 4(m-3) = 25 - 4m + 12 = -4m + 37
để phương trình có 2 nghiệm phân biệt thì delta > 0
=> -4m + 37 > 0
=> m < \(\dfrac{37}{4}\)
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
a) thay m=5 vào pt (1) dc
\(\left(5-4\right)x^2-2.5x+5-2=0\)
<=>\(x^2-10x+3=0\)
<=>\(\left(x-5-\sqrt{22}\right)\left(x-5+\sqrt{22}\right)=0\)
<=>\(\left[{}\begin{matrix}x=5+\sqrt{22}\\x=5-\sqrt{22}\end{matrix}\right.\)
b)Thay x=-1 vào pt (1) dc
\(\left(m-4\right)\left(-1\right)^2-2m\left(-1\right)+m-2=0\)
<=>\(m-4+2m+m-2=0\)
<=>\(4m=6\)
<=>m=\(\dfrac{3}{2}\)
Pt có nghiệm nên
Áp dụng hệ thức Vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-4}\left(2\right)\\x_1.x_2=\dfrac{m-2}{m-4}\left(3\right)\end{matrix}\right.\)
Thay m=\(\dfrac{3}{2}\)và x=-1 vào pt (2) ta dc
\(-1+x=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-4}=-\dfrac{6}{5}\)
=>x=\(-\dfrac{1}{5}\)
c)\(\Delta'=\left[-\left(m\right)\right]^2-\left(m-4\right)\left(m-2\right)=m^2-\left(m^2-6m+8\right)=6m-8\)
pt có nghiệm kép <=>\(\Delta'=0\)
<=>\(6m-8=0< =>m=\dfrac{4}{3}\)
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
Cho pt x^2 -2(m-1).x-4m = 0 a) tìm m để pt có 2 nghiệm dương b) tìn m để pt có 2 nghiệm âm phân biệt
∆' = m² - 2m + 1 + 4m
= m² + 2m + 1
= (m + 1)² ≥ 0 với mọi m
a) Để phương trình có hai nghiệm dương thì:
S = x₁ + x₂ = 2(m - 1) > 0
P = x₁.x₂ = -4m > 0
*) 2(m - 1) > 0
m - 1 > 0
m > 1 (1)
*) -4m > 0
m < 0 (2)
Kết hợp (1) và (2) ta suy ra không tìm được m để phương trình có hai nghiệm dương.
b) Để phương trình có hai nghiệm âm phân biệt thì
∆ > 0; S < 0; P > 0
*) ∆ > 0
⇔ (m + 1)² > 0
⇔ m + 1 ≠ 0
⇔ m ≠ -1 (3)
*) S = 2(m - 1) < 0
⇔ m - 1 < 0
⇔ m < 1 (4)
*) P > 0
⇔ -4m < 0
⇔ m < 0 (5)
Từ (3), (4) và (5) ⇒ m < 1
Vậy với m < 1 thì phương trình đã cho có hai nghiệm âm phân biệt
\(x^2-2\left(m-1\right)x-4m=0\)
\(b,\) Để pt có 2 nghiệm âm phân biệt thì \(\left\{{}\begin{matrix}a\ne0\\-\dfrac{b}{a}< 0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2\left(m-1\right)}{1}< 0\)
\(\Leftrightarrow2m-2< 0\)
\(\Leftrightarrow2m< 2\)
\(\Leftrightarrow m< 1\)
Vậy m < 1 thì pt có 2 nghiệm âm phân biệt
có ai trả lời không
bn tính delta xong xét đk là đc nhé xD lười quá